Comportamiento potencial del fuego de copas en masas de Pinus pinea bajo diferentes tratamientos preventivos

  • Juan Ramon Molina University of Córdoba
  • F Rodriguez y Silva University of Cordoba
  • M A Herrera University of Cordoba
Palabras clave: incendios forestales, ordenación del combustible, masas de coníferas, tratamientos preventivos

Resumen

Los incendios forestales constituyen una amenaza estacional de carácter permanente, acentuada en los últimos años por el cambio climático. Las políticas forestales deben considerar este problema y plantear líneas de actuación para la mitigación de los efectos del paso de las llamas sobre los ecosistemas y la población circundante. El objetivo de este estudio radica en la evaluación de la eficacia de diferentes tratamientos selvícolas en masas de Pinus pinea en estado latizal en relación con sus efectos en el comportamiento potencial del fuego. La evaluación del comportamiento del fuego requiere de una caracterización del combustible en sus dos niveles: superficial y aéreo. Dados los costes de esta última caracterización, el inventario de campo ha permitido obtener una ecuación a partir de la cual se puede obtener la carga de combustible aéreo sin necesidad de apeo de árboles. La caracterización completa del combustible permite la predicción del comportamiento del fuego de cada tratamiento selvícola, y si éste es suficientemente virulento como para producir una transición a fuego de copas. Las masas en estado latizal de P.pinea adquieren mucha susceptibilidad a la ocurrencia de incendios de copa debido a que generalmente la parte inferior de las copas se encuentra invadida por un sotobosque denso e inflamable. Los tratamientos aéreos, como claras y podas, no contribuyen por si solos a eliminar esta susceptibilidad a fuego de copas. Este estudio plantea la necesidad de tratamientos del combustible superficial y aéreo de forma conjunta para asegurar la eficacia de las labores de extinción. Dada la limitación presupuestaria actual se limitan los tratamientos del combustible al 23.40% del área estudiada con objeto de mitigar en la medida de lo posible los impactos de los incendios de copa en unas masas arboladas de indudable protagonismo futuro para el desarrollo socioeconómico de su población circundante.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agee J.K., Bahro B., Finney M., Omi P., Sapsis D., Skinner C., Van Wagtendonk J.W., Weatherspoon P., 2000. The use of shaded fuelbreaks in landscape fire management. Forest Ecol Manage 127, 55-66. http://dx.doi.org/10.1016/S0378-1127(99)00116-4

Agee J.K., Skinner C., 2005. Basic principles of forest fuel reduction treatments. Forest Ecol Manage 211, 83-96. http://dx.doi.org/10.1016/j.foreco.2005.01.034

Alexander M.E., Cruz M.G., Lopes A.M., 2006. CFIS: a software tool for simulation crown fire initiation and spread. Proc V Intnl Conference on Forest Fire Research, Coimbra, Portugal. Nov 27-30.

Anderson H.E.,1982. Aids to determining fuel models for estimating fire behavior. General Technical Report INT-122. Department of Agriculture, Forest Service, Intermountain and Range Experiment Station, USA. 22 pp.

Andrews P.L., 2003. BehavePlus fire modelling system, version 5.0: variables. General Technical Report RMRSGTR-213WWW Revised. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. 111 pp.

Bevers M., Omi P., Hof J., 2004. Random location of fuel treatments in wildland community interfaces: a percolation approach.Can J For Res 34, 164-173. http://dx.doi.org/10.1139/x03-204

Brose P., Wade D., 2002. Potential fire behaviour in pine flatwood forests following three different fuel reduction techniques. Forest Ecol Manage 163, 71-84. http://dx.doi.org/10.1016/S0378-1127(01)00528-X

Burgan R.E., Rothermel R.C., 1984. Behave: fire behavior prediction and fuel modelling system-fuel subsystem. General Technical Report INT-167. Department of Agriculture, Forest Service, Intermountain and Range Experiment Station, USA. 126 pp.

Cohen J.D., Finney M.A., Yedinak K.M., 2006. Active spreading crown fire characteristics: implications for modelling. Proc V Intnl Conference on Forest Fire Research. Coimbra, Portugal. Nov 27-30.

Consejería de Medio Ambiente, 2004. Manual de Ordenación de Montes de Andalucía. Junta de Andalucía, Sevilla, Spain. 356 pp. [In Spanish].

Cruz M.G., Alexander M.E., Wakimoto R.M., 2002. Predicting crown fire behavior to support forest fire management decisions making. In: Forest fire research & wildland fire safety (Viegas D.X., ed). Millpress, Rotterdam, Holland. 264 pp.

Cruz M.G., Alexander M.E., Wakimoto R.M., 2005. Development and testing of models for predicting crown fire rate of spread in conifer forest stand. Can J For Res 35, 1626-1639. http://dx.doi.org/10.1139/x05-085

Cruz M.G., Butler B.W., Alexander M.E., Forthofer J.M., Wakimoto R.M., 2006. Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization. Int J Wildland Fire 15(1), 47-60. http://dx.doi.org/10.1071/WF04061

De Los Santos T., 2008. Caracterización de masas arboladas desde la perspectiva de los incendios de copa. Aplicación en los ecosistemas forestales de Sierra Morena en la provincia de Córdoba. Trabajo profesional fin de carrera. University of Córdoba, Spain. 245 pp. [In Spanish].

Dickinson J., Robinson A., Harrod R., Gessler P., Smith A., 2007. Modification of VanWagner's canopy fire propagation model. In: The fire environment-innovations, management, and policy, conference proceedings (Butler B., Cook W., comps). Proc RMRS-P46CD, Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. pp. 83-96.

Duguy B., Alloza J.A., Röder A., Vallejo R., Pastor F., 2007. Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain).Int. J. Wildland Fire 16, 619-632. http://dx.doi.org/10.1071/WF06101

Elvira L.M., Hernando C., 1989. Inflamabilidad y energía de las especies del sotobosque (estudio piloto con aplicación a los incendios forestales). Monografías INIA 68. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain. 99 pp. [In Spanish].

Finney M.A., 1998. FARSITE: Fire Area Simulator-model development and evaluation. Research Paper RMRSRP-4. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. 47 pp.

Finney M.A., 2002. Fire growth using minimum travel time methods. Can J For Res 32, 1420-1424. http://dx.doi.org/10.1139/x02-068

Flannigan M.D., Corns G.W., 2000. Influence of potential climate change on forest landscape dynamics of west-central Alberta. Can J For Res 30(12), 1905-1912. http://dx.doi.org/10.1139/x00-118

Flannigan M.D., Campbell I., Wotton M., Carcaillet C., Richard P., Bergeron Y., 2001. Future fire in Canada's boreal forest: paleoecology results and general circulation model-regional climate model simulations. Can J For Res 31(5), 854-864. http://dx.doi.org/10.1139/x01-010

Flannigan M.D., Amiro B.D., Logan K.A., Stocks B.J., Wotton M., 2006. Forest Fires and Climate Change in the 21st Century. Mitig Adapt Strat Glob Change 11(4), 847-859. http://dx.doi.org/10.1007/s11027-005-9020-7

González J.R., Palahí M., Pukkala T., 2005. Integrating fire risk considerations in forest management planning in Spain-a landscape level perspective. Land Ecol 20 957-970. http://dx.doi.org/10.1007/s10980-005-5388-8

Graham R., Harvey A., Jain T., Tonn J., 1999. The effects of thinning and similar stand treatments on fire behavior in Western forests. General Technical Report PNW-GTR-463. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, USA. 59 pp.

Green L.R., 1977. Fuelbreaks and other fuel modification for wildland fire control. Agricultural Handbook 499, Washington, DC. 79 pp.

Gustafson E.J., Zollner P.A., Sturtevant B.R., He H.S., Mladenoff D.J., 2004. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA. Land Ecol 19, 327-341. http://dx.doi.org/10.1023/B:LAND.0000030431.12912.7f

Heikkilä T.V., Grönnqvist R., Jurvélius M., 2007. Wildland fire management. Handbook for trainers. Ministry for Foreign Affairs of Finland, Helsinki, Finland. 248 pp.

Knapp E.E., Keeley J.E., Ballenger E.A., Brennan T.J., 2005. Fuel reduction and coarse woody debris dynamics with early and late season prescribed fire in a Sierra Nevada mixed conifer forest. Forest Ecol Manage 208, 383-397. http://dx.doi.org/10.1016/j.foreco.2005.01.016

Loehle C., 2004. Applying landscape principles to fire hazard reduction. Forest Ecol Manage 198, 261-267. http://dx.doi.org/10.1016/j.foreco.2004.04.010

Mason G., Baker T., Cram D., Boren J., Fernald A., Vanleeuwen D., 2007. Mechanical fuel treatment effects on fuel loads and indices of crown fire potential in a south central New Mexico dry mixed conifer forest. Forest Ecol Manage 251, 195-204. http://dx.doi.org/10.1016/j.foreco.2007.06.006

Millán M.M., Estrela M.J., Sanz M.J., Mantilla E., 2005. Climatic feedbacks and desertification: the Mediterranean model. J. Climate 18, 684-701. http://dx.doi.org/10.1175/JCLI-3283.1

Mitsopoulos I.D., Dimitrakopoulos A., 2007. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann For Sci 64, 287-299. http://dx.doi.org/10.1051/forest:2007006

Molina J.R., 2008. Integración de herramientas para la modelización preventiva y socioeconómica del paisaje forestal frente a los incendios en relación con el cambio climático. Doctoral thesis. University of Córdoba, Spain. [In Spanish].

Molina J.R., Rodríguez Y Silva F., Herrera M.A., Zamora R., 2009. A Simulation tool for socio-economic planning on forest fire suppression management. In: Fores fires detection, suppression and prevention (Gómez E., Álvarez K., eds). Nova Science Publishers, New York, USA. pp. 33-88.

Montero G., Candela J.A., Rodríguez A. (coord), 2004. El pino piñonero (Pinus pinea) en Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, Spain. 261 pp. [In Spanish].

Ritchie M., Skinner C., Hamilton T., 2007. Probability of tree survival after wildfire in an interior pine forest of northern California: effects of thinning and prescribed fire. Forest Ecol Manage 247, 200-208. http://dx.doi.org/10.1016/j.foreco.2007.04.044

Rodríguez Y Silva F., 1998. Mathematical model to determine the dimensions of the protection infrastructures in the technique of preventive selviculture. Proc III Intnl Conference on Forest Fire Research. Luso, Portugal. Nov 16-20.

Rodríguez Y Silva F., 2009. Comportamiento extremo del fuego en los incendios forestales. In: La defensa contra incendios forestales. Fundamentos y experiencias (Vélez R., coord). McGraw-Hill, Madrid, Spain. pp. 232-240. [In Spanish].

Rodríguez Y Silva F., Molina J.R., Carmona J.F., 2010. Manual técnico de aplicaciones informáticas para la defensa contra incendios forestales. Laboratorio de Defensa contra Incendios Forestales de la Universidad de Córdoba-MANPAI XXI, Córdoba, Spain. 117 pp. [In Spanish].

Rothermel R.C., 1972. A mathematical model for fire spread predictions in wildland fires. Research Paper INT-115. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, USA. 40 pp.

Rothermel R.C., 1991. Predicting behavior and size of crown fires in the Northern Rocky Mountains. Research Paper INT-438. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, USA. 46 pp.

Scott J.H., Reinhardt E.D., 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Research Paper RMRS-RP-29. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. 59 pp.

Scott J.H., Burgan R.E., 2005. Standard fire behavior fuel model: a comprehensive set for use with rothermel's surface fire spread model. General Technical Report RMRS-GTR-153. Department of Agriculture, Forest Service, Rocky Mountain Research Station, USA. 72 pp.

Smith D.M., Larson B.C., Kelty M.J., Ashton P.M.S., 1997. The practice of silviculture: applied forest ecology. John Wiley and Sons, Inc, New York, USA. 537 pp.

Stephens S.L., 1998. Evaluation of the effects of silvicultural and fuel treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. Forest Ecol Manage 105, 21-35. http://dx.doi.org/10.1016/S0378-1127(97)00293-4

Stephens S.L., Moghaddas J., 2005. Experimental fuel treatment impacts on forest structure, potential fire behavior and predicted tree mortality in a California mixed conifer-forest. Forest Ecol Manage 215, 21-36. http://dx.doi.org/10.1016/j.foreco.2005.03.070

Van Wagner C.E., 1977. Conditions for the start and spread of crown fire. Can J For Res 7, 23-34. http://dx.doi.org/10.1139/x77-004

Van Wagner C.E., 1993. Prediction of crown fire behavior in two stands of jack pine. Can J For Res 23, 442-449. http://dx.doi.org/10.1139/x93-062

Vélez R., 2009. Combustibles forestales: combustibilidad. In: La defensa contra incendios forestales. Fundamentos y experiencias (Vélez R., coord). McGraw-Hill, Madrid, Spain. pp. 131-143. [In Spanish].

Weatherspoon C., Skinner C., 1996. Landscapelevel strategies for forest fuel management. In: Assessment and scientific basis for management options. University of California, Centers for Water and Wildland Resources, USA. pp. 1471-1492.

Publicado
2011-07-10
Cómo citar
Molina, J. R., Rodriguez y Silva, F., & Herrera, M. A. (2011). Comportamiento potencial del fuego de copas en masas de Pinus pinea bajo diferentes tratamientos preventivos. Forest Systems, 20(2), 266-267. https://doi.org/10.5424/fs/2011202-10923
Sección
Articulos Originales