Cross species transferability of G-SSR and EST-SSR markers to Neltuma affinis Spreng.

  • María C. Soldati Instituto de Recursos Biológicos (IRB), Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, s/n, Hurlingham, Buenos Aires, Argentina https://orcid.org/0000-0001-8083-6630
  • Gregorio Gavier-Pizarro Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Instituto Nacional de Tecnología Agropecuaria (INTA), Cno. A 60 cuadras km 5.5 (5119), Córdoba, Argentina. https://orcid.org/0000-0003-3239-0595
  • Matías Morales Instituto de Recursos Biológicos (IRB), Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, s/n, Hurlingham, Buenos Aires, Argentina https://orcid.org/0000-0001-5540-9725
  • María F. Pomponio Instituto de Recursos Biológicos (IRB), Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, s/n, Hurlingham, Buenos Aires, Argentina https://orcid.org/0009-0001-1839-7371
  • Noga Zelener Centro de Investigación en Recursos Naturales, INTA, Los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, Argentina https://orcid.org/0009-0007-0269-3997
Keywords: microsatellites, genomic markers, functional markers, markers validation, ñandubay, espinal

Abstract

Aim of study: To examine the transferability of G-SSR (genomic simple sequence repeats) and EST-SSR (expressed sequence tag simple sequence repeats) markers developed for several Neltuma species to N. affinis, a species with no genomic data.

Area of study: West-Center of Entre Ríos province, Argentina. The set of molecular markers here proposed can be used to analyze samples from the entire species’ distribution range.

Material and methods: Twenty-five genomic G-SSRs and eleven EST-SSRs from multiple species were amplified in thirty N. affinis genotypes. Polymorphism, discrimination power and possible deviations from Hardy-Weinberg equilibrium were assessed.

Main results: Seventeen highly polymorphic G-SSRs were successfully transferred to N. affinis, with a PIC (polymorphic information content) average value of 0.811 and a He (expected heterozygosity) average value of 0.694; thirteen were validated, showing very low frequencies of null alleles and no linkage disequilibrium. Additionally, seven polymorphic EST-SSRs were transferred. As expected, PIC and He average values were low. Six out of seven markers were validated, and very low frequencies of null alleles and no linkage disequilibrium were observed.

Research highlights: This work provides information on the levels of microsatellites’ cross transferability to N. affinis, and its polymorphism degree. Two sets of polymorphic SSRs (genomic and expressed) to study the genetic status of the species are proposed.

Downloads

Download data is not yet available.

References

Alves FM, Zucchi MI, Azevedo-Tozzi AMG, Sartori ALB, Souza AP, 2014. Characterization of microsatellite markers developed from Prosopis rubriflora and Prosopis ruscifolia (Leguminosae - Mimosoideae), legume species that are used as models for genetic diversity studies in Chaquenian areas under anthropization in South America. BMC Research Notes 7: 375. https://doi.org/10.1186/1756-0500-7-375

Arnold C, Rosetto M, McNally J, Henry R, 2002. The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. Am J Bot 89(1): 22-28. https://doi.org/10.3732/ajb.89.1.22

Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G, 2006. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrilamide gels. Biot Agron Env 10(2): 77-81.

Bessega CF, Pometti CL, Miller JT, Watts R, Saidman BO, Vilardi JC, 2013. New microsatellite loci for Prosopis alba and P. chilensis (Fabaceae). Appl Plant Sci 1(5): 1200324. https://doi.org/10.3732/apps.1200324

Bessega CF, Pometti CL, Fortunato R, Greene F, Santoro CM, McRostie V, 2021. Genetic studies of various Prosopis species (Leguminosae, Section Algarobia) co-occurring in oases of the Atacama Desert (northern Chile). Ecol Evol 00: 1-16. https://doi.org/10.1002/ece3.7212

Botstein D, White RL, Skolnik M, Davis RW, 1980. Construction of a genetic linkage map in man using RFLP. Am J Hum Gen 32: 314-331.

Burkart A, 1976. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Journal Arnold Arboretum 57 (3): 219-249. https://doi.org/10.5962/p.185864

Cabrera AL, 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina Agrícola y de Jardín 2(1): 1-85.

Catalano SA, Vilardi JC, Tosto D, Saidman BO, 2008. Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linnean Soc 93: 621-640. https://doi.org/10.1111/j.1095-8312.2007.00907.x

Chapuis MP, Estoup A, 2007. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24: 621-631. https://doi.org/10.1093/molbev/msl191

Contreras A, Licea-Moreno RJ, Campos V, Quintana J, Merino I, Gomez L, 2019. New set of microsatellite markers for the walnut hybrid progeny Mj209xRa and assessment of its transferability into Junglans genus. Forest Syst 28(2): e009. https://doi.org/10.5424/fs/2019282-14776

Demdoum S, Muñoz F, Delgado I, Valderrabano J, Wünsch A, 2012. EST-SSR cross-amplification and genetic similarity in Onobrychis genus. Genet Resour Crop Evol 59: 253-260. https://doi.org/10.1007/s10722-011-9681-x

Ferreira-Ramos R, Guerrieri Accoroni KA, Rossi A, Corbo M, Mestriner M, Martinez CA, et al., 2014. Genetic diversity assessment for Eugenia uniflora L., E. pyriformis Cambess., E. brasiliensis Lam. and E. francavilleana O. Berg neotropical tree species (Myrtaceae) with heterologous SSR markers. Genet Resour Crop Evol 61: 267-272. https://doi.org/10.1007/s10722-013-0028-7

Freitas L, Melo CAF, Gaiotto FA, Corrêa RX, 2019. SSR based genetic diversity analysis in diploid algaroba (Prosopis spp.) population. J Agr Sci 11(1): 179-190. https://doi.org/10.5539/jas.v11n1p179

George S, Manoharan D, Lib J, Britton M, Parida A, 2017. Transcriptomic responses to drought and salt stress in desert tree Prosopis juliflora. Plant Gene 12: 114-122. https://doi.org/10.1016/j.plgene.2017.09.004

Hughes C, Ringelberg J, Lewis G, Catalano S, 2022. Disintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 205: 147-189. https://doi.org/10.3897/phytokeys.205.75379

Jahnke G, Smidla J, Deák T, Oláh R, Szőke BA, Nyitrainé Sárdy DA, 2022. The SSR null allele problem, and its consequences in pedigree reconstruction and population genetic studies in Viticulture. Horticulturae 8(7): 658. https://doi.org/10.3390/horticulturae8070658

Kalinowski ST, Taper ML, Marshall TC, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16: 1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Karcı H, 2023. Development of novel genic SSR markers and their transferability across the genus Pistacia species and comparison of in silico genomic SSRs and genic SSRs in pistachio. Plant Mol Biol Rep 41: 726-735. https://doi.org/10.1007/s11105-023-01409-2

Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, et al., 2010. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genom 11: 420. https://doi.org/10.1186/1471-2164-11-420

Manco R, Chiaiese P, Basile B, Corrado G, 2020. Comparative analysis of genomic‑ and EST‑SSRs in European plum (Prunus domestica L.): implications for the diversity analysis of polyploids. 3 Biotech 10: 543. https://doi.org/10.1007/s13205-020-02513-w

Morales M, Oakley L, Sartori A, Mogni V, Atahuachi M, Vanni RO, et al., 2019. Diversity and conservation of legumes in the Gran Chaco and biogeograpical inferences. PLoS ONE 14(8): e0220151. https://doi.org/10.1371/journal.pone.0220151

Mottura MC, Finkeldey R, Verga AR, Gailing O, 2005. Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross‐species amplification. Mol Ecol Notes 5: 487-489. https://doi.org/10.1111/j.1471-8286.2005.00965.x

Neophytou C, Heer K, Milesi P, Peter M, Pyhäjärvi T, Westergren M, et al., 2022. Genomics and adaptation in forest ecosystems. Tree Genet Genom 18: 12. https://doi.org/10.1007/s11295-022-01542-1

Ouyang P, Kang D, Mo X, Tian E, Hu Y, Huang R, 2018. Development and characterization of high-throughput EST-based SSR markers for Pogostemon cablin using transcriptome sequencing. Molecules 23(8): 2014. https://doi.org/10.3390/molecules23082014

Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, et al., 2018. Unidades de vegetación de la Argentina. Ecología Austral 28: 40-63. https://doi.org/10.25260/EA.18.28.1.0.399

Peakall R, Smouse PE, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Peyran C, Planes S, Tolou N, 2020. Development of 26 highly polymorphic microsatellite markers for the highly endangered fan mussel Pinna nobilis and cross-species amplification. Mol Biol Rep 47: 2551-2559. https://doi.org/10.1007/s11033-020-05338-1

Pomponio MF, Acuña C, Pentreath V, Lopez Lauenstein D, Marcucci Poltri s, Torales S, 2015. Resource communication: Characterization of functional SSR markers in Prosopis alba and their transferability across Prosopis species. Forest Syst 24(2): eRC04. https://doi.org/10.5424/fs/2015242-07188

Rousset F, 2008. Genepop Version 4.0: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Sabattini R, Sione S, Ledesma S, Sabattini J, Wilson M, 2016. Estimación de la pérdida de superficie de bosques nativos y tasa de deforestación en la cuenca del arroyo estacas (Entre Ríos, Argentina). Revista Científica Agropecuaria 20(1-2): 45-56.

Soldati MC, Fornes L, Van Zonneveld M, Thomas E, Zelener N, 2013. An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem Syst Ecol 47: 45-55. https://doi.org/10.1016/j.bse.2012.10.011

Torales SL, Rivarola M, Pomponio MF, Gonzalez S, Acuña CV, Fernández P, et al., 2013. De novo assembly and characterization of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genom 14: 705. https://doi.org/10.1186/1471-2164-14-705

Vinson CC, Mangaravite E, Sebbenn AM, Lander TA, 2018. Using molecular markers to investigate genetic diversity, mating system and gene flow of Neotropical trees. Brazil J Bot 41: 481-496. https://doi.org/10.1007/s40415-018-0472-x

Wu Y, He R, Lu Y, Zhang Z, Yang L, Guan X, et al., 2020. Development and evaluation of EST-SSR markers in Sorbus pohuashanensis and their application to other Sorbus species. Trees 34: 455-467. https://doi.org/10.1007/s00468-019-01928-0

Published
2023-12-21
How to Cite
Soldati, M. C., Gavier-Pizarro, G., Morales, M., Pomponio, M. F., & Zelener, N. (2023). Cross species transferability of G-SSR and EST-SSR markers to Neltuma affinis Spreng. Forest Systems, 33(1), eSC01. https://doi.org/10.5424/fs/2024331-20587
Section
Short communications

Funding data

Instituto Nacional de Tecnología Agropecuaria
Grant numbers PE I038, PE I114