Modelos para simular el desarrollo de masas regulares de Pinus brutia en Oriente Próximo

  • Sergio de Miguel
  • Timo Pukkala
  • Zuheir Shater
  • Nabil Assaf
  • Bassel Kraid
  • Marc Palahí
Palabras clave: modelos de árbol individual, dinámica forestal, cambio climático, Mediterráneo, Siria, Líbano

Resumen

El área de distribución natural de Pinus brutia se circunscribe principalmente al Mediterráneo oriental, siendo la conífera más extendida en Oriente Próximo. Se trata de una especie de gran importancia para la gestión forestal multiobjetivo debido a su alto valor ecológico y a su importancia económica. Dada la escasez de información científica existente sobre su dinámica en Oriente Próximo, se midió 133 parcelas de inventario semipermanentes en masas de P. brutia de entre 10 y 166 años en Siria y Líbano. Las parcelas se establecieron de tal manera que abarcaran todo el rango de variabilidad de calidades de sitio, de edades y de densidades de la masa. Se ajustaron modelos de índice de sitio, altura, autoclara e incremento en diámetro que incluyeron el efecto país. El modelo de índice de sitio fue obtenido mediante el método de la curva guía. Los datos utilizados en el modelo de incremento en diámetro consistieron en mediciones de los dos últimos períodos de crecimiento de 10 años, utilizando para ello todos los árboles de las 133 parcelas. Dicho modelo se ajustó utilizando variables relacionadas con la calidad de sitio, el tamaño del árbol y la competencia. El modelo de autoclara fue ajustado estimando el número máximo de árboles por hectárea en función del diámetro medio y del índice de sitio. Este conjunto de ecuaciones constituye los primeros modelos transfronterizos en Oriente Medio, y permiten simular y predecir el crecimiento y la producción de las masas de P. brutia a partir de información obtenida a escala de árbol individual. Dichos modelos, combinados con técnicas de optimización, permitirán optimizar la gestión de los bosques de P. brutia para diferentes objetivos de planificación.

Descargas

La descarga de datos todavía no está disponible.

Citas

Awada T., Radoglou K., Fotelli M.N., Constantinidou H.I.A., 2003. Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiol 23, 33-41. http://dx.doi.org/10.1093/treephys/23.1.33 PMid:12511302

Baskerville G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2, 49-53. http://dx.doi.org/10.1139/x72-009

Boydak M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. – a review. Plant Ecol 171, 153-163. http://dx.doi.org/10.1023/B:VEGE.0000029373.54545.d2

Boydak M., Dirik H., Çalikog˘ Lu M., 2006. Biology and Silviculture of Turkish Red Pine (Pinus brutia Ten.). Ormancılıg˘ı Gelis¸tirme ve Orman Yangınları ile Mücadele Hizmetlerini Destekleme Vakfı Yayını, Lazer Ofset Matbaası, Ankara, Turkey. 253 pp.

Bravo F., Pando V., Ordóñez V., Lizarralde I., 2008. Modelling ingrowth in Mediterranean pine forests: a case study from Scots pine (Pinus sylvestris L.) and Mediterranean maritime pine (Pinus pinaster Ait.) stands in Spain. Invest Agr: Sist Rec For 17(3), 250-260.

Carus S., 2005. A diameter increment model for Crimean pine (Pinus nigra Arnold) and Calabrian pine (Pinus bru- tia Ten.) stands in Isparta region, Turkey. J Environ Biol 26(3), 467-473. PMid:16334284

Clutter J.L., Forston J.C., Piennar L.V., Brister G.H., Bailey R.L., 1983. Timber management – a quantitative approach. Willey, New York. 333 pp.

Fady B., Semerci H., Vendramin G.G., 2003. EUFORGEN Technical Guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). International Plant Genetic Resources Institute, Rome, Italy. 6 pp. PMid:14523524

Fischer R., Lorenz M., Köhl M., Becher G., Granke O., Christou A., 2008. The condition of forests in Europe: 2008 executive report. United Nations Economic Commission for Europe, Convention on Longrange Transboundary Air Pollution, International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). 23 pp.

Fontaine M., Aerts R., Özkan K., Mert A., Gülsoy S., Süel H., Waelkens M., Muys B., 2007. Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey. For Ecol Manage 247, 18-25.

Gezer A., 1985. The sylviculture of Pinus brutia in Turkey. In: CIHEAM, le pin d'Alep et le pin brutia dans la sylviculture méditerranéenne. Options Méditerranéennes, Série Etudes, Paris, 86(1), 55-66.

Giorgi F., Lionello P., 2008. Climate change projections for the Mediterranean region. Global Planet Change 63, 90-104. http://dx.doi.org/10.1016/j.gloplacha.2007.09.005

Hann D.W., Hanus M.L., 2001. Enhanced mortality equations for trees in the mixed conifer zone of southwest Oregon. For Res Lab Res, Contr. 17. Oregon, State University. 34 pp.

Hynynen J., 1993. Self-thinning models for even-aged stands of Pinus sylvestris, Picea abies and Betula pendula. Scand J Forest Res 8, 326-336. http://dx.doi.org/10.1080/02827589309382781

Kiviste A.K., Álvarez-González J.G., Rojo A., Ruiz A.D., 2002. Funciones de crecimiento de aplicación en el ámbito forestal, Monografía INIA: Forestal nº 4, Ministerio de Ciencia y Tecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid.

Mitscherlich E.A., 1919. Das gesetz des pflanzenwachstums. Landwirtschaftliche jahrbucher 53, 167-182.

Moré J.J., 1977. The Levenberg-Marquardt algorithm: implementation and theory in numerical analysis. In: Lecture notes in mathematics (Watson G.A., ed). Berlin, Springer-Verlag. PMCid:1234848

Nahal I., 1983. Le pin brutia (Pinus brutia Ten. subsp. brutia), Première partie. Forêt Méditerranéenne 5(2), 165-172.

Palahí M., Pukkala T., Kasimiadis D., Poirazidis K., Papageorgiou A.C., 2008. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece. Ann For Sci 65(5). doi: 10.1051/forest:2008022. http://dx.doi.org/10.1051/forest:2008022

Panetsos K.P., 1985. Genetics and breeding in the group halepensis. In: CIHEAM, le pin d'Alep et le pin brutia dans la sylviculture méditerranéenne. Options Méditerranéennes, Série Etudes, Paris, 86(1), 81-88.

Peschel W., 1938. Die mathematischen methoden zur herleitung der wachstumsgesetze von baum und bestand und die ergebnisse ihrer anwendung. Tharandter Forstliches Jahrburch 89, 169-247.

Quézel P., 1985. Les pins du groupe halepensis - Ecologie, végétation, ecophysiologie. In: CIHEAM, Le pin d'Alep et le pin brutia dans la sylviculture méditerranéenne. Options Méditerranéennes, Série Etudes, Paris, 86(1), 11-66.

Reineke L.H., 1933. Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research 46, 627-638.

Richardson D.M., 1998. Ecology and biogeography of Pinus. Cambridge University Press, Cambridge. 527 pp.

Sarris D., Christodoulakis D., Körner C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Change Biol 13, 1187-1200. http://dx.doi.org/10.1111/j.1365-2486.2007.01348.x

Schumacher F.X., 1939. A new growth curve and its application to timber yield studies. J Forest 37, 819-820.

Shater Z., De-Miguel S., Kraid B., Pukkala T., Palahi M., 2010. A growth and yield model for evenaged Pinus brutia stands in Syria. Ann For Sci. [In press].

Snowdon P., 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21, 720-724. SPSS Inc, 2008. SPSS Base system syntax reference Guide. Release 17.0.1.

Stoffels A., Van Soest J., 1953. The main problems in sample plots. Ned Boschb Tijdschr 25, 190-199

Strand L., 1964. Numerical constructions of site-index curves. For Sci 10 (4), 410-414.

Tomé M., 1989. Modelação do crescimiento da árbore individual em povoamentos de Eucalyptus globulus Labill. (1ª Rotação). Região Centro de Portugal. Ph D thesis, ISA, Lisbon.

Weber R., 1891. Lehrbuch der forsteinrichtung mit besonderer berücksichtigung der zuwachsgesetze der waldbaüme. Springer-Verlag. 440 pp. http://dx.doi.org/10.1007/978-3-642-92385-2

Weibull W., 1951. A statistical distribution function of wide applicability. J Applied Mechanics 18(3), 293-297.

Winsor C.P., 1932. The Gompertz curve as a growth curve. Proc Nat Acad Sci 18, 1-8. http://dx.doi.org/10.1073/pnas.18.1.1 PMid:16577417 PMCid:1076153

Yoda K., Kira T., Ogawa H., Hozumi K., 1963. Selfthinning in overcrowded pure stands under cultivated and natural conditions. Journal of Biology, Osaka City Univ 14, 107-129.

Publicado
2010-11-29
Cómo citar
de Miguel, S., Pukkala, T., Shater, Z., Assaf, N., Kraid, B., & Palahí, M. (2010). Modelos para simular el desarrollo de masas regulares de Pinus brutia en Oriente Próximo. Forest Systems, 19(3), 449-457. https://doi.org/10.5424/fs/2010193-9046
Sección
Articulos Originales

Artículos más leídos del mismo autor/a