Alometría de la biomasa y factores de carbono para un pino Mediterráneo (Pinus pinea L.) en Portugal

  • Alexandra Cristina Correia Instituto Superior de Agronomia
  • Margarida Tomé Instituto Superior de Agronomia
  • Pacheco Carlos Instituto Superior de Agronomia
  • Faias Sónia Instituto Superior de Agronomia
  • Ana Dias Instituto Superior de Agronomia
  • João Freire Instituto Superior de Agronomia
  • Pedro Ochoa Carvalho Instituto Superior de Agronomia
  • João Santos Pereira Instituto Superior de Agronomia
Palabras clave: Pinus pinea, balance de carbono, cambio climático, inventario de biomasa.

Resumen

Los bosques juegan un papel importante en el balance global del carbono porque desplazan una gran porción del dióxido de carbono emitidos por actividades humanas. Se necesitan estimaciones precisas para los informes nacionales de los inventarios de los gases de efecto invernadero, mercados de créditos de carbono, y manejo de carbono en los bosques. Pero en Portugal todavía faltan, para algunas especies, metodologías de mediciones fiables y accesibles de carbono en los bosques. El objetivo de este estudio es proporcionar a los gestores forestales una base de datos completa de los factores y ecuaciones del carbono que permitan estimar los stocks de carbono a nivel de rodal, en Pinus pinea, independientemente de la información disponible de los inventarios de árbol. Producimos ecuaciones de biomasa del matorral, y del volumen del troco, factores de expansión de biomasas (BEF) por componente así como densidad básica de la madera (WBD) y fracción de los componentes de carbono en la biomasa. Un ratio raíz-tallo se presenta también utilizando datos de los arboles en los que los sistemas radicales se extrajeron completamente. Se cosecharon 53 árboles en el centro y sur de Portugal, cubriendo tamaños diferentes (6,5 a 56,3 cm), edades (10 a 45 años), y densidad del rodal (20 a 580 árboles ha–1). Los resultados indican que la alometria del sistema radical en P. pinea no es comparable con otros pinos y varía considerablemente con las características del rodal destacando la necesidad de desarrollar factores dependientes del rodal y ecuaciones para cálculos de carbono a nivel local o regional. BEFradical disminuye de rodales abiertos (1,33 ± 0,03 Mg m–3) a cerrados (1,07 ± 0,01 Mg m–3) debido a cambios en la asignación de biomasa de tronco a ramas. La media de WBD es 0,50 ± 0,01 Mg m–3 pero varía con la dimensión de los árboles y el ratio de raíz a tallo se encuentra entre 0,30 ± 0,03. La fracción de carbono fue estadísticamente diferente del factor comúnmente utilizado de 0,5 de algunos componentes de biomasa. Las ecuaciones y los factores producidos permiten la evaluación de los stocks de carbono en rodales de P. pinea en Portugal, contribuyendo a una información más precisa del carbono secuestrado por este tipo de bosque.

Descargas

La descarga de datos todavía no está disponible.

Citas

António N., Tomé M., Tomé J., Soares P., Fontes L., 2007. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Canadian Journal of Forest Research 37, 895-906. http://dx.doi.org/10.1139/X06-276

Benito Garzón M., Sánchez De Dios R., Sainz Ollero H., 2008. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11, 169-178. http://dx.doi.org/10.3170/2008-7-18348

Bert D., Danjon F., 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279-295. http://dx.doi.org/10.1016/j.foreco.2005.10.030

Bond-Lamberty B., Wang C., Gower S.T., 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441-1450. http://dx.doi.org/10.1139/x02-063

Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world's upland forests. Oecologia 111, 1-11. http://dx.doi.org/10.1007/s004420050201

Calama R., Montero G., 2006. Stand and tree-level variability on stem form and tree volume in Pinus pinea L.: a multilevel random components approach. Invest Agrar: Sist Recur For 15, 24-41.

Carvalho A. 1996. Madeiras Portuguesas – Estrutura anatómica, propriedades, utilizações. Lisboa, Direcção Geral de Florestas.

Clark D.A., Brown S., Kicklighter D.W., Chambers J.Q., Thomlinson J.R., Ni J., 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11, 356-370. http://dx.doi.org/10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2

David T.S., Henriques M.O., Kurz-Besson C., Nunes J., Valente F., Vaz M., Pereira J.S., Siegwolf R., Chaves M.M., Gazarini L.C., David J.S., 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology 27, 793-803. http://dx.doi.org/10.1093/treephys/27.6.793 PMid:17331898

Del Río M., Barbeito I., Bravo-Oviedo A., Calama R., Cañellas I., Herrero C., Bravo F., 2008. Carbon sequestration in Mediterranean pine forests. In: Managing forest ecosystems: the chalenge of climate change (Bravo F., Lemay V., Jandl R., Gadow K.V., eds). Netherlands, Kluwer Academic Publishers. Vol. 17, pp. 215-241.

Delucia E.H., Maherali H., Carey E.V., 2000. Climate-driven changes in biomass allocation in pines. Global Change Biology 6, 587-593. http://dx.doi.org/10.1046/j.1365-2486.2000.00338.x

Evrendilek F., Berberoglu S., Taskinsu-Meydan S., Yilmaz E., 2006. Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environmental Monitoring and Assessment 119, 527-543. http://dx.doi.org/10.1007/s10661-005-9041-4 PMid:16741812

Fady B., Fineschi S., Vendramin G.G., 2004. EUFORGEN Technical Guidelines for genetic conservation and use of Italian stone pine (Pinus pinea). International Plant Genetic Resources Institute Rome, Italy. p. 6.

FAO, 1998. World reference base for soil resources. Rome, Food and Agriculture Organization of the United Nations.

Fernández G.B., 2004. El pino piñonero (Pinus pinea L.) en Andalucía. Sevilla, Dirección General de Gestión del Medio Natural.

Freire J.P, 2009. Modelação do crescimento e da produção de pinha no pinheiro manso.Doctoral thesis. Instituto Superior de Agronomia, Lisboa. [In Portuguese].

Gracia C., Sabaté S., 2002. Report of the COST E21 WG 1 Expert meeting on Biomass Expansion Factors (BEF). COST E21, WG1-biomass Workshop, Besalú.

Grunzweig J.M., Gelfand I., Fried Y., Yakir D., 2007. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 4, 891-904. http://dx.doi.org/10.5194/bg-4-891-2007

Hamilton K., Bayon R., Turner G., Higgins D., 2007. State of the voluntary carbon markets 2007: picking up steam. Ecosystem Marketplace and New Carbon Finance.

Ilomaki S., Nikinmaa E., Makela A., 2003. Crown rise due to competition drives biomass allocation in silver birch. Canadian Journal of Forest Research 33, 2395-2404. http://dx.doi.org/10.1139/x03-164

IPCC, 2003. IPCC Good Practice Guidance for LULUCF. Kanagawa, Japan, Institute for Global Environmental Strategies (IGES) for the IPCC.

Janssens I.A., Sampson D.A., Cermak J., Meiresonne L., Riguzzi F., Overloop S., Ceulemans R., 1999. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of Forest Science 56, 81-90. http://dx.doi.org/10.1051/forest:19990201

King J.S., Giardina C.P., Pregitzer K.S., Friend A.L., 2007. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Canadian Journal of Forest Research 37, 93-102. http://dx.doi.org/10.1139/x06-217

Lamlom S.H., Savidge R.A., 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass & Bioenergy 25, 381-388. http://dx.doi.org/10.1016/S0961-9534(03)00033-3

Lehtonen A., Makipaa R., Heikkinen J., Sievanen R., Liski J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188, 211-224. http://dx.doi.org/10.1016/j.foreco.2003.07.008

Levy P.E., Hale S.E., Nicoll B.C., 2004. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77, 421-430. http://dx.doi.org/10.1093/forestry/77.5.421

Mcdowell N., Barnard H., Bond B.J., Hinckley T., Hubbard R.M., Ishii H., Kostner B., Magnani F., Marshall J.D., Meinzer F.C., Phillips N., Ryan M.G., Whitehead D., 2002. The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132, 12-20. http://dx.doi.org/10.1007/s00442-002-0904-x

Mencuccini M., Grace J., 1995. Climate influences the leaf -area sapwood area ratio in scots pine. Tree Physiology 15, 1-10. http://dx.doi.org/10.1093/treephys/15.1.1 PMid:14966005

Montero G., Ruiz-Peinado R., Muñoz M., 2005. Producción de Biomassa y fijación de CO2 por los bosques españoles. Monografias INIA Serie Forestal, 270.

Mutke S., Gordo J., Gil L., 2005a. Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. European Journal of Forest Research 54, 189-197.

Mutke S., Gordo J., Gil L., 2005b. Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agricultural and Forest Meteorology 132, 263-272. http://dx.doi.org/10.1016/j.agrformet.2005.08.002

Mutke S., Gordo J., Climent J., Gil L., 2003. Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science 60, 527-537. http://dx.doi.org/10.1051/forest:2003046

Mutke S., Sievanen R., Nikinmaa E., Perttunen J., Gil L., 2005c. Crown architecture of grafted Stone pine (Pinus pinea L.): shoot growth and bud differentiation. Trees-Structure and Function 19, 15-25. http://dx.doi.org/10.1007/s00468-004-0346-7

Myers R., 1990. Classical and modern regression with applications. PWS publishers.

Ohlemuller R., Gritti E.S., Sykes M.T., Thomas C.D., 2006. Quantifying components of risk for European woody species under climate change. Global Change Biology 12, 1788-1799. http://dx.doi.org/10.1111/j.1365-2486.2006.01231.x

Oliveras I., Martínez-Vilalta J., Jiménezortiz T., Lledo M.J., Escarre A., Pinol J., 2003. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology 169 131-141. http://dx.doi.org/10.1023/A:1026223516580

Parresol B.R., 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest science 45, 573-593.

Parresol B.R., 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research 31, 865-878. http://dx.doi.org/10.1139/x00-202

Peichl M., Arain M.A., 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253, 68-80. http://dx.doi.org/10.1016/j.foreco.2007.07.003

Porté A., Trichet P., Bert D., Loustau D., 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 158, 71-83. http://dx.doi.org/10.1016/S0378-1127(00)00673-3

Quézel P., Medáil F. 2003. Écologie et biogeography des forêts du bassin méditerranéen. Paris, Elsevier.

Ravindranath N.H., Ostwald M., 2008. Carbon Inventory Methods - Handbook for Greehouse Gas, Carbon Mitigation and Roudwood Production Projects. Springer. http://dx.doi.org/10.1007/978-1-4020-6547-7

Ritson P., Sochacki S., 2003. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia. Forest Ecology and Management 175, 103-117. http://dx.doi.org/10.1016/S0378-1127(02)00121-4

Ryan M.G., Yoder B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242. http://dx.doi.org/10.2307/1313077

Ryu Y., Sonnentag O., Nilson T., Vargas R., Kobayashi H., Wenk R., Baldocchi D.D., 2010. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural and Forest Meteorology 150, 63-76. http://dx.doi.org/10.1016/j.agrformet.2009.08.007

Saint-Andre L., M'bou A.T., Mabiala A., Mouvondy W., Jourdan C., Roupsard O., Deleporte P., Hamel O., Nouvellon Y., 2005. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management 205, 199-214. http://dx.doi.org/10.1016/j.foreco.2004.10.006

SAS, 2004. SAS 9.1.3 Service Pack 3 WIN_PRO platform. Cary, NC, SAS Institute Inc.

Soares P., Tomé M., Skovsgaard J.P., Vanclay J., 1995. Evaluating a growth model for forest management using continuous forest inventory data. Forest Ecology and Management 71, 251-265. http://dx.doi.org/10.1016/0378-1127(94)06105-R

Somogyi Z., Cienciala E., Makipaa R., Muukkonen P., Lehtonen A., Weiss P., 2006. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research 126, 197-207. http://dx.doi.org/10.1007/s10342-006-0125-7

Tobin B., Nieuwenhuis M., 2007. Biomass expansion factors for Sitka spruce (Pinea sitchensis Bong. Carr.) in Ireland. European Journal of Forest Research, 189-196. http://dx.doi.org/10.1007/s10342-005-0105-3

Tomé M., Barreiro S., Paulo J.A., Meyer A., Ramos T., 2007. Inventário Florestal 2005-2006. Áreas, volumen e biomassas dos povoamentos florestais - Relatório resultante do protocolo de cooperação DGRF/ISA no âmbito do Inventário Florestal Nacional de 2005-2006. Lisboa, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Centro de Estudos Florestais.

Vanclay J., Skovsgaard J.P., 1997. Evaluating forest growth models. Ecological Modeling 98, 1-12. http://dx.doi.org/10.1016/S0304-3800(96)01932-1

Vendramin G.G., Fady B., González-Martínez S.C., Hu F.S., Scotti I., Sebastiani F., Soto A., Petit R.J., 2008. Genetically depauperate but widespread: the case of an emblematic mediterranean pine. Evolution 62, 680-688. http://dx.doi.org/10.1111/j.1558-5646.2007.00294.x PMid:17983461

Waring R.H., Schroeder P.E., Oren R., 1982. Application of the pipe model theory to predict canopy leafarea. Canadian Journal of Forest Research 12, 556-560. http://dx.doi.org/10.1139/x82-086

Zianis D., Muukkonen P., Mäkipää R., Mencucinni M., 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, 63.

Zobel B.J., Buijtenen J.P., 1989. Wood variation. Its causes and control. Berlin, Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-74069-5

Publicado
2010-10-04
Cómo citar
Correia, A. C., Tomé, M., Carlos, P., Sónia, F., Dias, A., Freire, J., Carvalho, P. O., & Pereira, J. S. (2010). Alometría de la biomasa y factores de carbono para un pino Mediterráneo (Pinus pinea L.) en Portugal. Forest Systems, 19(3), 418-433. https://doi.org/10.5424/fs/2010193-9082
Sección
Articulos Originales