Aboveground soil C inputs in the ecotone between Scots pine

  • E. Diaz-Pines Department of Silviculture and Pasciculture. Universidad Politécnica de Madrid.
  • A. Rubio Department of Silviculture and Pasciculture. Universidad Politécnica de Madrid.
  • F. Montes Departamento de Selvicultura y Gestión Forestal. CIFOR-INIA. Ctra. de A Coruña, km 7,5. 28
Keywords: litterfall, Pinus sylvestris, Quercus pyrenaica, ecotone, Mediterranean mountain.


Aboveground litterfall from Pyrenean oak (Quercus pyrenaica Willd. a semi-deciduous species), mixed Pyrenean oak-pine and pine (Pinus sylvestris L.) forest stands was surveyed in two sites in a Mediterranean mountain area during a period of 36 and 29 months, respectively. Separation in different litterfall fractions was performed, and C content of each fraction was measured to calculate the C flux to the soil due to litterfall. Our results showed that litterfall input was higher in pine stands than in Pyrenean oak stands (1.8-2.4 Mg C ha–1 year–1 at pine plots and 0.9-1.4 Mg C ha–1 year–1 at oak plots) and mixed plots showed intermediate values. Needles or leaves contributed about 50% to total litterfall, underpinning the importance of the rest of materials in the soil C input. The seasonal pattern showed a maximum in Pyrenean oak stands in autumn-early winter, while the pine stands had the maximum in summer, which is in consonance with the physiology of fall of broadleaves and coniferous trees in these latitudes , but clearly differs from needle-shed in Central and Northern Europe. A dry-spring year corresponded to a lower leaf fall during the following autumn, and leaf abscission came some weeks earlier than a year with a rainy spring.


Download data is not yet available.


Aponte C., García L.V., Maranon T., Gardes M., 2010. Indirect host effect on ectomycorrhizal fungi: leaf fall and litter quality explain changes in fungal communities on the roots of co-occurring Mediterranean oaks. Soil Biol Biochem 42, 788-796. http://dx.doi.org/10.1016/j.soilbio.2010.01.014

Astel A., Parzych A., Trojanowski J., 2009. Comparison of litterfall and nutrient return in a Vaccinio uliginosi-Betuletum pubescentis and an Empetro nigri-Pinetum forest ecosystem in northern Poland. Forest Ecol Manag 257, 2331-2341. http://dx.doi.org/10.1016/j.foreco.2009.03.026

Bellot J., Sánchez J.R., Lledó M.J., Martínez P., Escarré A., 1992. Litterfall as a measure of primary production in Mediterranean holm-oak forest. Plant Ecol 99-100, 69-76. http://dx.doi.org/10.1007/BF00118211

Berg B., Albrektson A., Berg M.P., Cortina J., Johansson M.-B., Gallardo A., Madeira M., Pausas J., Kratz W., Vallejo V.R., Mcclaugherty C.A., 1999. Amounts of litter fall in some pine forests in a European transect, in particular Scots pine. Ann For Sci 56, 625-639. http://dx.doi.org/10.1051/forest:19990801

Berg B., Meentemeyer V., 2001. Litter fall in some European coniferous forests as dependent on climate: a synthesis. Can J Forest Res 31, 292-301. http://dx.doi.org/10.1139/x00-172

Binkley D., Giardina C.P., 1998. Why do tree species affect soils? The warp and the woof of tree-soil interactions. Biogeochemistry 42, 89-106. http://dx.doi.org/10.1023/A:1005948126251

Blanco E., Casado M.A., Costa M., Escribano R., García M., Génova M., Gómez Á., Gómez F., Moreno J.C., Morla C., Regato P., Sainz H., 1997. Robledales marcescentes. In: Los bosques ibéricos. Una interpretación geobotánica (Gómez F., ed). Editorial Planeta, Barcelona. pp. 213-266. [In Spanish].

Blanco J.A., Imbert J.B., Castillo F.J., 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. Forest Ecol Manag 237, 342-352. http://dx.doi.org/10.1016/j.foreco.2006.09.057

Bussotti F., Borghini F., Celesti C., Leonzio C., Cozzi A., Bettini D., Ferretti M., 2003. Leaf shedding, crown condition and element return in two mixed holm oak forests in Tuscany, central Italy. Forest Ecol Manag 176, 273-285. http://dx.doi.org/10.1016/S0378-1127(02)00283-9

Callaway R.M., Nadkarni N.M., 1991. Seasonal patterns of nutrient deposition in a Quercus douglasii woodland in central California. Plant Soil 137, 209-222. http://dx.doi.org/10.1007/BF00011199

Cañellas I., Martínez García F., Montero G., 2000. Silviculture and dynamic of Pinus sylvestris L. stands in Spain. Invest Agrar: Sist Recur For 1, 233-253.

Caritat A., García-Berthou E., Lapeña R., Vilar L., 2006. Litter production in a Quercus suber forest of Montseny (NE Spain) and its relationship to meteorological conditions. Ann For Sci 63, 791-800. http://dx.doi.org/10.1051/forest:2006061

Díaz-Maroto I.J., Vila-Lameiro P., 2006. Litter production and composition in natural stands of Quercus robur L. (Galicia, Spain). Pol J Ecol 54, 429-439.

Díaz-Pinés E., Rubio A., Van Miegroet H., Montes F., Benito M., in press. Does tree species composition control soil organic matter pools in Mediterranean mountains? Forest Ecol Manag. doi: 10.1016/j.foreco.2011.02.004. http://dx.doi.org/10.1016/j.foreco.2011.02.004

Do Amaral J., 1990. Quercus L. In: Flora ibérica (Castroviejo S., Laínz M., López González G., Montserrat P., Muñoz Garmendia F., Paiva J., Villar L., eds), Vol. II. Platanaceae - lumbaginaceae (partim). Real Jardín Botánico, CSIC, Madrid. pp. 15-36. [In Spanish].

Galiano L., Martínez-Vilalta J., Lloret F., 2010. Drought-induced multifactor decline of Scots Pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13, 978-991. http://dx.doi.org/10.1007/s10021-010-9368-8

Gallardo J.F., Martín A., Moreno G., Santa Regina I., 1998. Nutrient cycling in deciduous forest ecosystems of the Sierra de Gata mountains: nutrient supplies to the soil through both litter and throughfall. Ann For Sci 55, 771-784. http://dx.doi.org/10.1051/forest:19980702

Gandullo J.M., 1994. Climatología y ciencia del suelo. Fundación del Conde del Valle de Salazar, Madrid. 404 pp. [In Spanish].

Giardina C.P., Ryan M.G., Binkley D., Fownes J.H., 2003. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob Change Biol 9, 1438-1450. http://dx.doi.org/10.1046/j.1365-2486.2003.00558.x

Hansen K., Vesterdal L., Schmidt I.K., Gundersen P., Sevel L., Bastrup-Birk A., Pedersen L.B., Bille-Hansen J., 2009. Litterfall and nutrient return in f ive tree species in a common garden experiment. Forest Ecol Manag 257, 2133-2144. http://dx.doi.org/10.1016/j.foreco.2009.02.021

Jandl R., Lindner M., Vesterdal L., Bauwens B., Baritz R., Hagedorn F., Johnson D.W., Minkkinen K., Byrne K.A., 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137, 253-268. http://dx.doi.org/10.1016/j.geoderma.2006.09.003

Jobbágy E.G., Jackson R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10, 423-436. http://dx.doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

Kavvadias V.A., Alifragis D., Tsiontsis A., Brofas G., Stamatelos G., 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecol Manag 144, 113-127. http://dx.doi.org/10.1016/S0378-1127(00)00365-0

Körner C., 2003. Carbon limitation in trees. J Ecol 91, 4-17. http://dx.doi.org/10.1046/j.1365-2745.2003.00742.x

Kouki J., Hokkanen T., 1992. Long-term needle litterfall of a Scots pine Pinus sylvestris stand: relation to temperature factors. Oecologia 89, 176-181.

Lehtonen A., Sievänen R., Mäkelä A., Mäkipää R., Korhonen K.T., Hokkanen T., 2004. Potential litterfall of Scots pine branches in southern Finland. Ecol Model 180, 305-315. http://dx.doi.org/10.1016/j.ecolmodel.2004.04.024

Martín A., Gallardo J.F., Santa Regina I., 1996. Aboveground litter production and bioelement potential return in an evergreen oak (Quercus rotundifolia) woodland near Salamanca (Spain). Ann For Sci 53, 811-818. http://dx.doi.org/10.1051/forest:19960402

Martínez-Alonso C., Valladares F., Camarero J.J., López Arias M., Serrano M., Rodríguez J.A., 2007. The uncoupling of secondary growth, cone and litter production by intradecadal climatic variability in a mediterranean Scots pine forest. Forest Ecol Manag 253, 19-29. http://dx.doi.org/10.1016/j.foreco.2007.06.043

Michopoulos P., Baloutsos G., Economou A., Samara C., Thomaidis N.S., Grigoratos T., 2007. Nutrient cycling and foliar status in an urban pine forest in Athens, Greece. Plant Soil 294, 31-39. http://dx.doi.org/10.1007/s11104-007-9224-6

Ministerio De Medio Ambiente, 1998. Segundo Inventario Forestal Nacional 1986-1996: España. Dirección General de Conservación de la Naturaleza. Madrid. 377 pp. [In Spanish].

Montes F., Cañellas I., 2006. Modelling coarse woody debris dynamics in even-aged Scots pine forests. Forest Ecol Manag 221, 220-232. http://dx.doi.org/10.1016/j.foreco.2005.10.019

Pardo F., Gil L., Pardos J.A., 1997. Field study of beech (Fagus sylvatica L.) and melojo oak (Quercus pyrenaica Willd.) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191, 89-100. http://dx.doi.org/10.1023/A:1004237305438

Pausas J., 1997. Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees. J Veg Sci 8, 643-650. http://dx.doi.org/10.2307/3237368

Pérez-Suárez M., Arredondo-Moreno J.T., Huber-Sannwald E., Vargas-Hernández J.J., 2009. Production and quality of senesced and green litterfall in a pine-oak forest in central-northwest Mexico. Forest Ecol Manag 258, 1307-1315. http://dx.doi.org/10.1016/j.foreco.2009.06.031

Raich J.W., Nadelhoffer K.J., 1989. Belowground carbon allocation in forest ecosystems: global trends. Ecology 70, 1346-1354. http://dx.doi.org/10.2307/1938194

Rapp M., Santa Regina I., Rico M., Gallego H.A., 1999. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. Forest Ecol Manag 119, 39-49. http://dx.doi.org/10.1016/S0378-1127(98)00508-8

Roig S., Del Río M., Cañellas I., Montero G., 2005. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. Forest Ecol Manag 206, 179-190. http://dx.doi.org/10.1016/j.foreco.2004.10.068

Santa Regina I., Tarazona T., 2001. Nutrient pools to the soil through organic matter and throughfall under a Scots pine plantation in the Sierra de la Demanda, Spain. Eur J Soil Sci 37, 125-133.

Sariyildiz T., Anderson J.M., 2005. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. Forest Ecol Manag 210, 303-319. http://dx.doi.org/10.1016/j.foreco.2005.02.043

Smith K., Gholz H.L., Oliveira F.D.A., 1998. Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. Forest Ecol Manag 109, 209-220. http://dx.doi.org/10.1016/S0378-1127(98)00247-3

Starr M., Saarsalmi A., Hokkanen T., Merila P., Helmisaari H.S., 2005. Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. Forest Ecol Manag 205, 215-225. http://dx.doi.org/10.1016/j.foreco.2004.10.047

Trumbore S.E., 2006. Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Change Biol 12, 141-153. http://dx.doi.org/10.1111/j.1365-2486.2006.01067.x

Vesterdal L., Schmidt I.K., Callesen I., Nilsson L.O., Gundersen P., 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecol Manag 255, 35-48. http://dx.doi.org/10.1016/j.foreco.2007.08.015

Vogt K., Grier C., Vogt D., 1986. Production, turnover and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res15, 303-377. http://dx.doi.org/10.1016/S0065-2504(08)60122-1

How to Cite
Diaz-Pines, E., Rubio, A., & Montes, F. (2011). Aboveground soil C inputs in the ecotone between Scots pine. Forest Systems, 20(3), 485-495. https://doi.org/10.5424/fs/20112003-11083
Research Articles