Is forage productivity of meadows influenced by the afforestation of upstream hillsides? A study in NW Patagonia

  • Mariana Weigandt
  • Javier Gyenge CONICET-INTA
  • María Elena Fernández CONICET-INTA
  • Santiago Varela INTA
  • Tomás Schlichter INTA
Keywords: Pinus ponderosa, agua subterranea, productividad de biomasa aérea forrajera

Abstract

Meadows are important reserves of water, with a key role in the maintenance of the biodiversity and productivity of ecosystems. In Patagonia, Argentina, afforestation with fast-growing exotic conifers has slowly but continuously increased over recent decades; though unfortunately, knowledge of the effects of afforestation on water resources remains scarce, with no information at all related to its impact on water dynamics and productivity of meadows located downslope to it. The effects of Pinus ponderosa afforestation on water dynamics (soil moisture contents and groundwater level) and productivity (aboveground forage productivity) of Northwest Patagonia meadows under xeric and humid conditions were analyzed. In the humid meadow, gravimetric soil water content, groundwater level and forage productivity were similar downslope of forested and non-forested slopes, with a trend towards higher forage productivity on the forested slope. In the xeric meadow, gravimetric soil water content was always higher downslope of the non-forested slope, with no difference in groundwater level between treatments. Forage productivity was statistically similar between situations (downslope of forested and non-forested slopes), with a trend towards higher productivity in the zone with higher soil water content. The main difference in the latter was related to differences in soil texture between zones. These results suggest that coniferous plantations located upstream of this type of meadow do not produce a direct effect on its aboveground forage productivity. These systems have high complexity linked to precipitation, geomorphology and previous history of land use, which determine primarily soil water dynamics and consequently, forage productivity.

Downloads

Download data is not yet available.

References

Ares J., 2007. Systems valuing of natural capital and investment in extensive pastoral systems: lessons from the Patagonian case. Ecological Economics 62, 162-173. doi: 10.1016/j.ecolecon.2006.06.01.

Ayesa J., Bran D., López C., Marcolín A., Barrios D., 1999. Aplicaciones de la teledetección para la caracterización y clasificación utilitaria de valles y mallines. Revista Argentina de Producción Animal 19, 133-138.

Bari M., Schofield N., 1991. Effects of agroforestrypasture associations on groundwater level and salinity. Agroforestry Systems 16, 13-31. http://dx.doi.org/10.1007/BF00053194

Baver L.D., Gardner W.H., Gardber W.R., 1972. Soil physics. Ed J Wiley & Sons. 549 pp.

Bonvissuto G., Somlo R., Ayesa J., Lanciotti M., Moricz De Tecso E., 1992. La condición de mallines del área ecológica Sierras y Mesetas de Patagonia. Revista Argentina de Producción Animal 12, 391-400.

Bonvissuto G., Somlo R., 1998. Guías de condición para los campos naturales de Precordillera y Sierras y Mesetas de Patagonia. Prodesar INTA-GTZ. 24 pp.

Bosch J.M., Hewlett J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology 55.

Brinson M., Málvarez A., 2002. Temperate freshwater wetlands: types, status, and threats. Environmental Conservation, Foundation for Environmental Conservation 29(2), 115-113.

Brown A., Zhang L., Mcmahon T., Western A, Vertessy R., 2005. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology 310, 28-61. http://dx.doi.org/10.1016/j.jhydrol.2004.12.010

Buono G., Oesterheld M., Nakamatsu V., Paruelo J.M., 2010. Spatial and temporal variation of primary production of Patagonian wet meadows. Journal of Arid Environments 74, 1257-1261. http://dx.doi.org/10.1016/j.jaridenv.2010.05.026

Chen X., Hu Q., 2004. Groundwater influences on soil moisture and surface evaporation. Journal of Hydrology 297, 285-300. http://dx.doi.org/10.1016/j.jhydrol.2004.04.019

Defina A., 1972. El clima de la región de los bosques Andino-Patagonicos. La región de los bosques Andino-Patagonicos, sinopsis general (Dimitri M., ed). Instituto Nacional de Tecnología Agropecuaria, Bs As. pp. 35-58.

Díaz R., Rebori G., 2002. Redistribución de las lluvias y balance de agua en una plantación de Eucalyptus dunni en el sur de Santa Fé (Segunda Parte). SAGPyA Forestal 24, 14-17.

Fernández R., Trillo N., 2005. La textura del suelo como fuente de heterogeneidad; sus efectos sobre la oferta de agua para las plantas. In: La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando J.C. Léon (Oesterheld M., Aguiar M.R., Ghersa C., Paruelo J.M., comp). Editorial Facultad de Agronomía, Universidad de Buenos Aires. 420 pp.

Godoy M., Defossé G., 2004. Introducción de especies forestales para la diversificación de las forestaciones y la rehabilitación de sitios degradados en la Patagonia Argentina. In: Informe final PIA 05/00 SAGPyA-BIRF. 128 pp.

Gyenge J.E., Fernández M.E., Dalla Salda G., Schlichter T.M., 2002. Silvopastoral system in Northwester Patagonia II: water balance and water potential in a stand of Pinus ponderosa and native grassland. Agroforestry Systems 55, 47-55. http://dx.doi.org/10.1023/A:1020269432671

Gyenge J.E., Fernández M.E., Schlichter T.M., 2003. Water relations of ponderosa pines in Patagonia Argentina: implications for local water resources and individual growth. Trees Structure and Function 17(5), 417-423. http://dx.doi.org/10.1007/s00468-003-0254-2

Gyenge J.E., 2005. Uso de agua y resistencia a la sequía de pino ponderosa y ciprés de la cordillera. Tesis doctoral. Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Río Negro. 222 pp. PMCid:1474210

Gyenge J.E., Fernández M.E., Schlichter T., 2009. Effects on site water balance of conversion from native mixed forest to Douglas-fir plantation in NW Patagonia. New Forests 38, 67-80. http://dx.doi.org/10.1007/s11056-009-9132-0

Hillel D., 1984. L'eau el le soil. Principes et processus physiques. Ed Cabay. 288 pp.

Hong Z., Shangyu G., Qjuhong Z., 2002. Responses of NPP of salinized meadows to global change in hyperarid regions. Journal of Arid Environments 50, 489-498. http://dx.doi.org/10.1006/jare.2001.0863

Jackson R., Jobbágy E., Avissar R., Vahadilla R., Barrett D., Cook C., Farley K., Le Maitre D., Mccarl B., Murray B., 2005. Trading water for carbon with biological sequestration. Science 310, 1944-1947. doi: 10.1126/science.1119282. http://dx.doi.org/10.1126/science.1119282

Jobbágy E., Sala E., 2000. Controls of grass and shrub production in the Patagonia steppe. Ecological Application 10, 541-549. http://dx.doi.org/10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2

Jobbagy E.G., Jackson R.B. 2004. Groundwater use and salinization with grassland afforestation. Global Change Biology 10, 1299-1312. http://dx.doi.org/10.1111/j.1365-2486.2004.00806.x

Lanciotti M., Cremona V., Burgos A., 1999. Tecnología para la recuperación y mejoramiento de Mallines. Parte 1: Dinámica del agua. Comunicación Técnica N.º 39 Área de Recursos Naturales Suelo, INTA, EEA, SC de Bariloche, Río Negro, Argentina.

Lauenroth W., 1979. Grassland primary production: North American grassland in perspective. In: Perspectives in grassland ecology (French N., ed). Springer-Verlag, New York. pp. 3-24. http://dx.doi.org/10.1007/978-1-4612-6182-7_2

Lauenroth W., Sala O., 1992.Long-term forage production of North America shortgrass steppe. Ecology Applied 2, 397-403. http://dx.doi.org/10.2307/1941874

Le Maitre D.C., Scott D.F., Colvin C., 1999. A review of information on interactions between vegetation and groundwater. Water SA 25(2), 137-152.

Licata J., Gyenge J.E., Fernández M.E., Schlichter T., Bond B., 2008. Incresed water used by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. Forest Ecology and Management 255, 753-764. doi: 10.1016/j.foreco. 2007.09.061.

López C., Marcolín A., Bran D., Ayesa J., 1998. Caracterización, distribución y génesis de suelos aluviales hidromórficos y salsosódicos de Ingeniero Jacobacci (Provincia de Río Negro). Actas del XVI Congreso Argentino de Suelos, Villa Carlos Paz, Córdoba.

Marcolín A., Durañona G., Ortiz R., Sourrouille E., Latur M., Larrama G., 1978. Caracterización de Mallines en un área del sudoeste de la Provincia de Río Negro. VIII Reunión Argentina de la Ciencia del Suelo. PMid:353713

Oesterheld M., Loreti J., Semmartin M., Sala O., 2001. Inter-annual variation in primary production of semi-arid grassland related to previous-year production. Journal of Vegetation Science 12, 137-142.

Orwing D., Abrams M., 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees Structure and Function 11, 474-484. http://dx.doi.org/10.1007/s004680050110

Raffaele E., 1999. Tópicos sobre humedales subtropicales y templados de Sudamérica. Ed A. I. Malvárez, Universidad de Bs As y MAB.

Reserva de Biosfera Andino Norpatagonica, 2007. Documento Base para la incorporación del territorio de Nor Patagonia a la Red Mundial de Reservas de Biosfera. Programa MAB_UNESCO. Administración de Parques Nacionales /Pcia de CHUBUT/Pcia de Rio Negro/INTA. Abril 2007. Informe Técnico Aprobado Sptiembre 2007.

Scanlon B., Healy R., Cook P., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10, 18-39. doi: 10.1007/s10040-0010176-2.

Scott D., Lesch W., 1997. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan Experimental Catchments, South Africa. Journal of Hydrology 199, 360-377. http://dx.doi.org/10.1016/S0022-1694(96)03336-7

Scott D.F., Lemaitre D.C., Fairbanks D.H.K., 1998. Forestry and streamflow reductions in South Africa: a reference system for assessing extent and distribution. Water SA 24(3), 187-199.

Scott D., Brujnzeel L., Vertessy R., Calder I., 2004. Forest hydrology: impacts of forest plantations on streamflows. In: The encyclopedia of forest sciences (Burley J., Evans J., Youngquist J.A, eds). Elsevier, Oxford, UK. http://dx.doi.org/10.1016/B0-12-145160-7/00272-6

Stackman W.P., 1980. Measuring soil moisture. In: Drainage principles and applications. Vol. III. Wageningen. 221-251.

Vertessy R.A., Bessard Y., 1999. Conversion of grasslands to plantations: anticipating the negative hydrologic effects. VIth International Rangeland Congress Proceedings (2): Townsville, QLD, Australia. 679-683.

World Water Council-Arab Water Council, 2009. Perspectives on water and climate change adaptation. Vulnerability of arid and semi arid regions to climate change: impacts and adaptive strategies. 16 pp.

Published
2011-04-13
How to Cite
Weigandt, M., Gyenge, J., Fernández, M. E., Varela, S., & Schlichter, T. (2011). Is forage productivity of meadows influenced by the afforestation of upstream hillsides? A study in NW Patagonia. Forest Systems, 20(1), 165-175. https://doi.org/10.5424/fs/2011201-10929
Section
Research Articles