Drought responsiveness in two Mexican conifer species forming young stands at high elevations

  • Eduardo Vivar-Vivar División de Ciencias Forestales, Universidad Autónoma Chapingo. Km 38.5 Carretera México-Texcoco, 56245, Chapingo, Estado de México.
  • Marin Pompa-Garcia Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Av. Papaloapan y Blvd. Durango, 34120 Durango.
  • Dante-Arturo Rodríguez-Trejo División de Ciencias Forestales, Universidad Autónoma Chapingo. Km 38.5 Carretera México-Texcoco, 56245, Chapingo, Estado de México.
  • Angel Leyva-Ovalle División de Ciencias Forestales, Universidad Autónoma Chapingo. Km 38.5 Carretera México-Texcoco, 56245, Chapingo, Estado de México.
  • Christian Wehenkel Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Boulevard del Guadiana 501, Ciudad Universitaria, Torre de Investigación, 34120, Durango.
  • Artemio Cariilo-Parra Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Boulevard del Guadiana 501, Ciudad Universitaria, Torre de Investigación, 34120, Durango.
  • Oswaldo Moreno-Anguiano Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Av. Papaloapan y Blvd. Durango, 34120, Durango.

Abstract

Aim of study: To determine the response of high-altitudinal forests to seasonal drought.

Area of study: Monte Tláloc, Estado de México and Rancho Joyas del Durazno, Municipality of Río Verde, San Luis Potosí, México.

Materials and methods: In this study, we evaluate the response to drought and hydroclimate in two young Mexican conifers sampled at high elevation, correlating records of tree-ring growth and the Normalized Difference Vegetation Index (NDVI).

Main results: The results show that Pinus teocote and Abies religiosa are vulnerable to the precipitation regime and warm conditions of winter-spring. The physiological response mechanisms seem to be differentiated between the species, according to the effects of drought stress. The NDVI demonstrated the different temporal responses of the species according to their inherent physiological mechanisms in response to hydroclimatic limitations. This differentiation can be attributed to the spatial variation present in the particular physical and geographic conditions of each area. The dry and warm seasonal climates reveal P. teocote and A. religiosa to be species that are vulnerable to drought conditions. However, further evaluation of the resistance and resilience of these species is necessary, as well as disentanglement of the effects of associated mechanisms that can influence the predicted processes of extinction or migration.

Research highlights: Pinus teocote and Abies religiosa are vulnerable to the seasonal drought conditions. These results are of particular importance given the climatic scenarios predicted for elevated ecotones. Tree-ring widths and NDVI improved the response of radial growth to the climate, enhancing our understanding of forest growth dynamics. The response to climatic variability depends on the particular species.

Keywords: High elevation; tree-ring; ENSO; NDVI; climate-growth relationship. 

Abbreviations used: Normalized Difference Vegetation Index (NDVI); Tree-Ring Width (TRw); precipitation (PP); maximum temperature (Tmax); minimum temperature (Tmin); El Niño-Southern Oscillation (ENSO); Climatic Research Unit Time-series data version 4.04 data (CRU TS v. 4.04); Standardized Precipitation-Evapotranspiration Index (SPEI); Climatic Research Unit Time-series data version 4.03 data (CRU TS v. 4.03); first-order autocorrelation (AC); mean sensitivity (MS); mean correlation between trees (Rbt); expressed population signal (EPS); Ring Width Index (RWI).

Downloads

Download data is not yet available.

References

Alcaraz-Segura D, Baldi G, Durante P, Garbulsky MF, 2008. Análisis de la dinámica temporal del NDVI en áreas protegidas: tres casos de estudio a distintas escalas espaciales, temporales y de gestión. Ecosistemas 17(3): 108-117.

Astudillo-Sánchez CC, Villanueva-Díaz J, Endara-Agramont AR, Nava-Bernal GE, Gómez-Albores MA, 2017. Influencia climática en el reclutamiento de Pinus hartwegii Lindl. del ecotono bosque-pastizal alpino en Monte Tláloc, México. Agrociencia 51: 105-118.

Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, et al., 2014. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201 (4): 1289-1303. https://doi.org/10.1111/nph.12589

Beguería S, Vicente-Serrano SM, Reig F, Lagtorre B, 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(19): 3001-3023. https://doi.org/10.1002/joc.3887

Bunn AG, 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26(2): 115-124. https://doi.org/10.1016/j.dendro.2008.01.002

Carrer M, Urbinati C, 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85: 730-740. https://doi.org/10.1890/02-0478

Correa-Díaz A, Silva LCR, Horwath WR, Gómez-Guerrero A, Vargas-Hernández JJ, Villanueva-Díaz J, Velázquez-Martínez A, Suárez-Espinoza J, 2019. Linking Remote Sensing and Dendrochronology to Quantify Climate-Induced Shifts in High-Elevation Forests Over Space and Time. J Geophys Res 124: 166-183. https://doi.org/10.1029/2018JG004687

Farjon A, Styles BT, 1997. Pinus (Pinaceae): Flora Neotropica Monograph 75. New York Botanical Garden, NY, USA. 293 pp.

Fritts HC, 1976. Dendrochronology and Dendroclimatology. In: Tree Rings and Climate; Fritts HC (ed). pp: 1-54. Academic Press, Caldwell, NJ, USA. https://doi.org/10.1016/B978-0-12-268450-0.50006-9

Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, et al., 2018. Forest resilience to drought varies across biomes. Glob Change Biol 24(5): 2143-2158. https://doi.org/10.1111/gcb.14082

González-Cásares M, Pompa-García M, Camarero JJ, 2017. Differences in climate-growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 31: 531-544. https://doi.org/10.1007/s00468-016-1488-0

González-Rosales A, Rodríguez Trejo DA, 2004. Efecto del chamuscado de copa en el crecimiento en diámetro de Pinus hartwegii Lindl. en el Distrito Federal, México. Agrociencia, 38(5): 537-544.

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R, 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202: 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gutiérrez-García G, Ricker M, 2019. Influencia del clima en el crecimiento radial en cuatro especies de coníferas en la sierra de San Antonio Peña Nevada (Nuevo León, México). Rev mex biodivers 90: e902676. https://doi.org/10.22201/ib.20078706e.2019.90.2676

Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43: 69-78.

Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115: 445-459. https://doi.org/10.1007/s004420050540

Liu B, Wang Y, Zhu H, Liang E, Camarero JJ, 2016. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau. Int J Biometeorol 60 (10): 1577-1587. https://doi.org/10.1007/s00484-016-1148-5

Manzanilla-Quiñones U, Aguirre-Calderón OA, Jiménez-Pérez J, Villanueva-Díaz J, 2020. Sensibilidad climática en anchuras de anillos de crecimiento de Pinus hartwegii: una especie alpina mexicana con potencial dendroclimático. Rev mex biodivers 91: e913117. https://doi.org/10.22201/ib.20078706e.2020.91.3117

Martínez-Meyer E, 2005. Climate Change and Biodiversity: Some considerations in forecasting shifts in especies' potential distributions. Biodiversity Informatics, 2, 45-55. https://doi.org/10.17161/bi.v2i0.8

Peña-Gallardo M, Vicente-Serrano SM, Camarero JJ, Gazol A, Sánchez-Salguero R, Domínguez-Castro F, El Kenawy A, Beguería-Portugés S, Gutiérrez E, De Luis M, et al., 2018. Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands. Forests 9(9): 524. https://doi.org/10.3390/f9090524

Pollard JH, 1971. On distance estimators of density in randomly distributed forests. Biometrics, 991-1002. https://doi.org/10.2307/2528833

Pompa-García M, Camarero JJ, 2020. Latin American Dendroecology Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory. Springer, Cham, Switzerland. 381 pp. https://doi.org/10.1007/978-3-030-36930-9

Pompa-García M, González-Cásares M, Gazol A, Camarero JJ, 2021. Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century. Sci Total Environ 772: 145286. https://doi.org/10.1016/j.scitotenv.2021.145286

R Core Team, 2018 R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/

Rzedowski J, 2006. Vegetación de México. 1ra Edición digital. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad México. México, D.F., México. https://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMx_Cont.pdf

Santiago-García W, Ángeles-Pérez G, Quiñonez-Barraza G, de los Santos-Posadas HM, Rodríguez-Ortiz G, 2020. Avances y perspectivas en la modelación aplicada a la planeación forestal en México. Madera y bosques 26 (2): e2622004. https://doi.org/10.21829/myb.2020.2622004

Torres-Rojo JM, Moreno-Sánchez R & Mendoza-Briseño MA, 2016. Sustainable forest management in Mexico. Curr Forestry Rep 2, 93-105. https://doi.org/10.1007/s40725-016-0033-0

Vicente-Serrano SM, Camarero JJ, Olano JM, Martín-Hernández N, Peña-Gallardo M, Tomás-Burguera M, Gazol A, Azorin-Molina C, Bhuyan U, El Kenawy A, 2016. Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens Environ 187: 14-29. https://doi.org/10.1016/j.rse.2016.10.001

Villanueva-Díaz J, Cerano-Paredes, J, Fulé PZ, Cortés-Montaño C, Vázquez-Selem L, Yocom LL, Ruiz-Corral JA, 2015. Cuatro siglos de variabilidad hidroclimática en el noroeste de Chihuahua, México, reconstruida con anillos de árboles. Invest geo 87: 141-153.

Villanueva-Díaz J, Vázquez-Selem L, Estrada-Ávalos J, Martínez-Sifuentes AR, Cerano-Paredes J, Canizales-Velázquez PA, Franco-Ramos O, Reyes-Camarillo FR, 2018. Comportamiento hidroclimático de coníferas en el Cerro Potosí, Nuevo León, México. Rev Mex Cienc Forestales 9 (49): 165-187. https://doi.org/10.29298/rmcf.v9i49.128

Wigley TML, Briffa KR, Jones PD, 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Clim 23 (2): 201-213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, et al., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3: 292-297. https://doi.org/10.1038/nclimate1693

Published
2021-09-21
How to Cite
Vivar-Vivar, E., Pompa-Garcia, M., Rodríguez-Trejo, D.-A., Leyva-Ovalle, A., Wehenkel, C., Cariilo-Parra, A., & Moreno-Anguiano, O. (2021). Drought responsiveness in two Mexican conifer species forming young stands at high elevations. Forest Systems, 30(3), e012. https://doi.org/10.5424/fs/2021303-18371
Section
Research Articles