Fungal diversity and colonization in roots seed trees of Swietenia macrophylla King (Magnoliophyta: Meliaceae) in the tropical rainforest of Laguna Om, Quintana Roo, Mexico

  • Guadalupe SÁNCHEZ-REYES Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya. Ctra. Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, Quintana Roo, 77960 Mexico
  • Luis A. LARA-PÉREZ Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya. Ctra. Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, Quintana Roo, 77960 Mexico https://orcid.org/0000-0003-1617-6441
  • Centro de Investigación Científica de Yucatán. Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, 97200 Mexico https://orcid.org/0000-0003-0739-2206
  • Víctor H. RODRÍGUEZ-MORELOS Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-la-Neuve, Belgium https://orcid.org/0000-0001-5779-0953
  • Fernando CASANOVA-LUGO Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya. Ctra. Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, Quintana Roo, 77960 Mexico https://orcid.org/0000-0003-2485-9170
  • Angélica NAVARRO-MARTÍNEZ El Colegio de la Frontera Sur. Av. Centenario km 5.5. Chetumal, Quintana Roo, 77014 Mexico https://orcid.org/0000-0003-3603-5742
  • Carlos A. PUCH-HAU Tecnológico Nacional de México, Campus Instituto Tecnológico Superior de Valladolid, Ctra. Valladolid-Tizimín, km 3.5, 97780 Valladolid, Yucatán, Mexico https://orcid.org/0000-0001-7231-4031
  • Iván OROS-ORTEGA Tecnológico Nacional de México, Campus Instituto Tecnológico de la Zona Maya. Ctra. Chetumal-Escárcega km 21.5, Ejido Juan Sarabia, Quintana Roo, 77960 Mexico https://orcid.org/0000-0002-7542-5391
Keywords: arbuscular mycorrhiza fungi, dark septate endophytes, symbiosis, mahogany, tropical tree, virtual taxon

Abstract

Aim of study: (i) To investigate the diversity of arbuscular mycorrhizal fungi (AMF) associated with the roots of seed trees stands in a conserved and natural population of mahogany (Swietenia macrophylla), based on rDNA sequences; and (ii) to evaluate the dual colonization by AMF and dark septate fungi (DSF), showing the types of fungal colonization patterns in the dry season.

Area of study: Tropical rainforest of Ejido Laguna Om, Quintana Roo, Mexico.

Material and methods: We evaluated the AMF and DSF colonization in secondary root segments of ten adult trees of mahogany. We analysed the diversity of AMF in one composite sample of mahogany roots (three trees) using 18S rDNA gene with Illumina MiSeq platform.

Main results: Through metabarcoding 14 virtual taxa belonging mainly to the genus Glomus and Diversispora were obtained, VTX00186 being the most abundant. The percentages of colonization for the different fungal structures were hyphae 80%, vesicles 18%, coils 2%, and arbuscules 0.5%; for DSF, 60% hyphae and 12% microsclerotia. The Paris-type colonization predominated with 61% in the roots.

Research highlights: The knowledge of the AMF diversity present in natural mahogany forests will allow the selection of species for inoculation management seeking to enhance seedling survival and growth of this species.

Downloads

Download data is not yet available.

References

Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA, 2000. Are tropical fungal endophytes hyperdiverse? Ecol Lett 3(4): 267-274. https://doi.org/10.1046/j.1461-0248.2000.00159.x

Brundrett MC, Tedersoo L, 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220(4): 1108-1115. https://doi.org/10.1111/nph.14976

Calvo J, Bolaños R, Watson V, Jiménez H, 2000. Diagnóstico de la caoba (Swietenia macrophylla King) en Mesoamérica: Visión general (Evaluation of Mahogany in Mesoamerica: General Overview). Tropical Science Center / PROARCA / CAPAS, San José, Costa Rica, 23 p.

Cannon PF, Simmons CM, 2002. Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94(2): 210-220. https://doi.org/10.1080/15572536.2003.11833226

Chen M, Arato M, Borghi L, Nouri E, Reinhardt D, 2018. Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Front Plant Sci 9: 1270. https://doi.org/10.3389/fpls.2018.01270

Danieli-Silva A, Uhlmann A, Vicente-Silva J, Stürmer SL, 2010. How mycorrhizal associations and plant density influence intra- and inter-specific competition in two tropical tree species: Cabralea canjerana (Vell.) Mart. and Lafoensia pacari A.St.-Hil. Plant Soil 330: 185-193. https://doi.org/10.1007/s11104-009-0191-y

de Souza FA, Dalpé Y, Declerck S, de la Providencia IE, Séjalon-Delmas N, 2005. Life history strategies in Gigasporaceae: insight from monoxenic culture. In: In vitro culture of mycorrhizas; Declerck S et al. (eds). Soil Biology, vol 4. Springer, Berlin, Heidelberg, pp: 73-91. https://doi.org/10.1007/3-540-27331-X_5

Della Mónica IF, Saparrat MC, Godeas AM, Scervino JM, 2015. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol 17: 10-17. https://doi.org/10.1016/j.funeco.2015.04.004

Dhar PP, Mridha M, 2006. Biodiversity of arbuscular mycorrhizal fungi in different trees of Madhupur forest, Bangladesh. J For Res 17: 201-205. https://doi.org/10.1007/s11676-006-0047-8

Dhar PP, Mridha M, 2012. Arbuscular mycorrhizal associations in different forest tree species of Hazarikhil forest of Chittagong, Bangladesh. J For Res 23: 115-122. https://doi.org/10.1007/s11676-012-0241-9

Dickson S, 2004. The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163(1): 187-200. https://doi.org/10.1111/j.1469-8137.2004.01095.x

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R, 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381

Felsenstein J, 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

García I, Mendoza RE, Pomar MC, 2012. Arbuscular mycorrhizal symbiosis and dark septate endophytes under contrasting grazing modes in the Magellanic steppe of Tierra del Fuego. Agric Ecosyst Environ 155: 194-201. https://doi.org/10.1016/j.agee.2012.04.020

Grogan J, Blundell AG, Landis RM, Youatt A, Gullison RE, Martinez M, et al., 2010. Over-harvesting driven by consumer demand leads to population decline: big-leaf mahogany in South America. Conserv Lett 3(1): 12-20. https://doi.org/10.1111/j.1755-263X.2009.00082.x

Harrison NA, Richardson PA, Kramer JB, Tsai JH, 1994. Detection of the mycoplasma-like organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathol 43: 998-1008. https://doi.org/10.1111/j.1365-3059.1994.tb01649.x

Hart MM, Reader RJ, 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153: 335-344. https://doi.org/10.1046/j.0028-646X.2001.00312.x

Herrera RA, Ferrer RL, 1980. Vesicular-arbuscular mycorrhiza in Cuba. In: Tropical mycorrhizae research; Mikola P (ed). Clarendon Press, Oxford, England. pp: 156-162.

Holste EK, Kobe RK, 2017. Tree species and soil nutrients drive tropical reforestation more than associations with mycorrhizal fungi. Plant Soil 410: 283-297. https://doi.org/10.1007/s11104-016-3013-z

Husband R, Herre EA, Turner SL, Gallery R, Young JP, 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11(12): 2669-2678. https://doi.org/10.1046/j.1365-294X.2002.01647.x

INEGI, 2016. Obtenido de Conjunto de datos vectoriales de la carta de uso de suelo y vegetación: escala 1:250,000. Serie V (2011). Instituto Nacional de Estadística, Geografía e Informática. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359

Jumpponen A, 2001. Dark septate endophytes-are they mycorrhizal? Mycorrhiza 11: 207-211. https://doi.org/10.1007/s005720100112

Jumpponen A, Trappe JM, 1998. Dark septate endophytes: a review of facultative biotrophic root‐colonizing fungi. New Phytol 140(2): 295-310. https://doi.org/10.1046/j.1469-8137.1998.00265.x

Kimura M, 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2): 111-120. https://doi.org/10.1007/BF01731581

Kometter RF, Martinez M, Blundell AG, Gullison RE, Steininger MK, Rice RE, 2004. Impacts of unsustainable mahogany logging in Bolivia and Peru. Ecol Soc 9(1): https://doi.org/10.5751/ES-00629-090112

Kormanik PP, Bryan WC, Schultz RC, 1980. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Can J Microbiol 26(4): 536-538. https://doi.org/10.1139/m80-090

Lamb FB, 1966. Mahogany of tropical America: Its ecology and management. University of Michigan Press, Ann Arbor, USA, 220 pp.

Langbour P, Gérard J, Roda J, Fauzi P, Guibal D, 2011. Comparison of wood properties of planted big-leaf mahogany (Swietenia macrophylla) in Martinique island with naturally grown mahogany from Brazil, Mexico and Peru. J Trop For Sci 23(3): 252-259. https://agritrop.cirad.fr/560903/1/document_560903.pdf

Lara-Pérez LA, Oros-Ortega I, Córdova-Lara I, Estrada-Medina H, O'Connor-Sánchez A, Góngora-Castillo E, et al., 2020. Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico. Mycorrhiza 30: 269-283. https://doi.org/10.1007/s00572-020-00944-0

Leal PL, Siqueira JO, Stürmer SL, 2013. Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Appl Soil Ecol 71: 72-80. https://doi.org/10.1016/j.apsoil.2013.05.010

Mandyam K, Jumpponen A, 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Micol 53: 173-189. https://doi.org/10.3114/sim.53.1.173

Matekwor Ahulu E, Nakata M, Nonaka M, 2005. Arum- and Paris-type arbuscular mycorrhizas in a mixed pine forest on sand dune soil in Niigata Prefecture, Central Honshu, Japan. Mycorrhiza 15: 129-136. https://doi.org/10.1007/s00572-004-0310-9

Maulana AF, Turjaman M, Sato T, Hashimoto Y, Cheng W, Tawaraya K, 2018. Isolation of endophytic fungi from tropical forest in Indonesia. Symbiosis 76: 151-162. https://doi.org/10.1007/s13199-018-0542-7

Mayhew JE, Newton AC, 1998. The silviculture of mahogany. CABI Publ, Wallingford, UK, 242 pp. https://doi.org/10.1079/9780851993072.0000

Mridha M, Dhar PP, 2007. Biodiversity of arbuscular mycorrhizal colonization and spore population in different agroforestry trees and crop species growing in Dinajpur, Bangladesh. J For Res 18: 91-96. https://doi.org/10.1007/s11676-007-0018-8

Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K, 2006. Arbuscular mycorrhizal morphology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17: 11-24. https://doi.org/10.1007/s00572-006-0077-2

Nandi R, Mridha MAU, Bhuiyan MK, 2014. Seasonal dynamics of arbuscular mycorrhizal fungi (AMF) in forest trees of Chittagong University Campus in Bangladesh. J For Environ Sci 30(3): 277-284. https://doi.org/10.7747/JFS.2014.30.3.277

Navarro C, Hernández G, 2004. Progeny test analysis and population differentiation of Mesoamerican Mahogany (Swietenia macrophylla). Agron Costarric 28(2): 37-51. https://www.redalyc.org/pdf/436/43628204.pdf

Navarro-Martínez A, Ellis EA, Hernández-Gómez I, Romero-Montero JA, Sánchez-Sánchez O, 2018. Distribution and abundance of big-leaf mahogany (Swietenia macrophylla) on the Yucatan Peninsula, Mexico. Trop Conserv Sci 11: 1-17. https://doi.org/10.1177/1940082918766875

Navarro-Martínez A, Ramírez-Magil G, Mendoza BMA, 2020. Geographic information systems for forest species distribution and habitat suitability. In: GIS LATAM. Communications in Computer and Information Science, vol 1276; Mata-Rivera MF et al. (eds). Springer, Cham. Mexico City, pp: 125-135. https://doi.org/10.1007/978-3-030-59872-3_9

Negreros-Castillo P, Martínez-Salazar I, Álvarez Aquino C, Navarro Martínez A, Mize CW, 2018. Survival and growth of Swietenia macrophylla seedlings from seeds sown into slash and burn fields in Quintana Roo, Mexico. Bois et Forets des Tropiques 337: 17-26. https://doi.org/10.19182/bft2018.337.a31628

Noldt G, Bauch J, 2001. Colonization of fine roots of mahogany (Swietenia macrophylla King) by vesicular-arbuscular mycorrhizal fungi under plantation conditions in Central Amazon. J Appl Bot 75(3-4): 168-172.

Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al., 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1): 223-241. https://doi.org/10.1111/j.1469-8137.2010.03334.x

Öpik M, Davison J, Moora M, Zobel M, 2014. DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92: 135-147. https://doi.org/10.1139/cjb-2013-0110

Pereira CMR, Silva DKA, Ferreira ACA, Goto BT, Maia LC, 2014. Diversity of arbuscular mycorrhizal fungi in Atlantic Forest areas under different land uses. Agric Ecosyst Environ 185(1): 245-252. https://doi.org/10.1016/j.agee.2014.01.005

Phillips JM, Hayman DS, 1970. Improved procedures for clearing and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. T Br Mycol Soc 55(1): 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Rajan LJ, Santhoshkumar AV, Surendragopal K, Kunhamu TK, 2020. Arbuscular mycorrhizal fungi inoculation as a climate adaptation strategy for establishment of Swietenia macrophylla King seedlings. Forests 11(5): 488. https://doi.org/10.3390/f11050488

Rodriguez RJ, White JF Jr, Arnold AE, Redman RS, 2009. Fungal endophytes: diversity and functional roles. New Phytol 182(2): 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

Rodríguez‐Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, et al., 2017. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 214(1): 380-390. https://doi.org/10.1111/nph.14122

Rodríguez-Morelos VH, Soto-Estrada A, Pérez-Moreno J, Franco-Ramírez A, Negreros-Castillo P, Díaz-Rivera P, 2014. Arbuscular mycorrhizal fungi associated with the rhizosphere of Swietenia macrophylla (Magnoliophyta: Meliaceae), in Los Tuxtlas, Veracruz, Mexico. Chil J Nat Hist 87: 9. https://doi.org/10.1186/s40693-014-0009-z

Schüßler A, Krüger C, Urgiles N, 2016. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 26(3): 199-207. https://doi.org/10.1007/s00572-015-0659-y

Shi ZY, Chen YL, Feng G, Liu RJ, Christie P, Li XL, 2006. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China. Mycorrhiza 16(2): 81-87. https://doi.org/10.1007/s00572-005-0017-6

Shi ZY, Wang FY, Chen YL, 2007. Diversity of AM fungi associated with the common tropical tree species in Wuzhi Mountain of Hainan Island, China. Shengtai Xuebao. Acta Ecol Sin 27: 2896-2903.

Silva FdA, Liotti RG, Boleti APdA, Reis ÉdM, Passos MBS, dos Santos EL, et al., 2018. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS ONE 13(4): e0195874. https://doi.org/10.1371/journal.pone.0195874

Smith FA, Smith SE, 1997. Structural diversity in (vesicular)-arbuscular mycorrhizal fungi. New Phytol 137: 373-388. https://doi.org/10.1046/j.1469-8137.1997.00848.x

Snook L, 1996. Catastrophic disturbance, logging and the ecology of Swietenia macrophylla King: grounds for listing a major tropical timber species in CITES. Bot J Linn Soc 122(1): 35-46. https://doi.org/10.1111/j.1095-8339.1996.tb02061.x

Stürmer SL, Oliveira LZ, Morton J, 2018. Gigasporaceae versus Glomeraceae (phylum Glomeromycota): A biogeographic tale of dominance in maritime sand dunes. Fungal Ecol 32: 49-56. https://doi.org/10.1016/j.funeco.2017.11.008

Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8): 1596-1599. https://doi.org/10.1093/molbev/msm092

van der Heijden MG, Martin FM, Selosse MA, Sanders IR, 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4): 1406-1423. https://doi.org/10.1111/nph.13288

Wang B, Qiu YL, 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5): 299-363. https://doi.org/10.1007/s00572-005-0033-6

Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, Saxena RK, et al., 2022. Outline of Fungi and fungus-like taxa-2021. Mycosphere 13(1): 53-453. https://doi.org/10.5943/mycosphere/13/1/2

Yamato M, 2004. Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14: 127-131. https://doi.org/10.1007/s00572-003-0246-5

Zhao X, Yuan S, Song H, Su X, Mao H, Shen W, et al., 2016. Arbuscular mycorrhizal and dark septate fungal associations in riparian plants of the Three Gorges Reservoir Region, Southwest China. Aquat Bot 133: 28-37. https://doi.org/10.1016/j.aquabot.2016.05.003

Published
2023-10-25
How to Cite
SÁNCHEZ-REYES, G., LARA-PÉREZ, L. A., SÁENZ-CARBONELL, L. A., RODRÍGUEZ-MORELOS, V. H., CASANOVA-LUGO, F., NAVARRO-MARTÍNEZ, A., PUCH-HAU, C. A., & OROS-ORTEGA, I. (2023). Fungal diversity and colonization in roots seed trees of Swietenia macrophylla King (Magnoliophyta: Meliaceae) in the tropical rainforest of Laguna Om, Quintana Roo, Mexico. Forest Systems, 32(3), e018. https://doi.org/10.5424/fs/2023323-19614
Section
Special Issue. Forests: Reservoirs of Global Mycocultural Heritage and Mycologic