Differential water-use efficiency and growth among Eucalyptus grandis hybrids under two different rainfall conditions

  • José Gándara Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo http://orcid.org/0000-0003-4442-2689
  • Silvia Ross Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo http://orcid.org/0000-0002-6694-6777
  • Gastón Quero Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo
  • Pablo Dellacassa Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo
  • Joaquín Dellepiane Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo
  • Gonzalo Figarola Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo http://orcid.org/0000-0003-3959-5307
  • Luis Viega Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo

Abstract

Aim of the study: To analyze the course of leaf water status, water-use efficiency and growth in Eucalyptus grandis and hybrids throughout seasons with different rainfall.

Area of study: The study was conducted in northern Uruguay.

Methods: A randomized block trial was established containing E. grandis (ABH17), E. grandis × Eucalyptus camaldulensis (GC172), E. grandis × Eucalyptus tereticornis (GT529), and E. grandis × Eucalyptus urophylla (GU08). Predawn leaf water potential (Ψpd) and midday leaf water potential (Ψmd) were measured every six weeks from the age of 16 months, throughout two growing seasons. Stomatal conductance (gs), net photosynthetic rate (A), and leaf-level transpiration (E) were measured once in each growing season, along with leaf carbon isotope discrimination (∆13C) and tree growth. Stomatal density and distribution were studied.

Results: ABH17 and GU08 had the lowest daily fluctuation of leaf water potential and showed stronger stomatal regulation; they were hypostomatic, and stomata on the adaxial leaf surfaces remained immature. GC172 and GT529 (Red-Gum hybrids) were amphistomatic and transpired more intensively; they were less efficient in instantaneous and intrinsic water use and grew faster under high soil moisture (inferred from rainfall). Under such conditions, GC172 reached the highest gas-exchange rate due to an increase in tree hydraulic conductance. ABH17 and GU08 were hypostomatic and used water more efficiently because of stronger stomatal regulation.

Research highlights: Red-Gum hybrids evidenced less water use efficiency due to lower stomatal regulation, different stomatal features, and distinct growth patterns as a function of soil moisture (inferred from rainfall).

Keywords: Eucalypt hybrids; stomatal conductance; water-use efficiency; transpiration.

Abbreviations used: Ψpd:predawn leaf water potential;Ψmd: midday leaf water potential; ΔΨ: daily fluctuation of leaf water potential ( ; A: net photosynthetic rate, E: leaf transpiration rate, gs: stomatal conductance, WUE: instantaneous water-use efficiency; WUEi: integrated water-use efficiency; A/E: leaf photosynthesis-to-leaf transpiration ratio; ∆13C: leaf carbon isotope discrimination; K: tree hydraulic conductance; E/∆Ψ: ratio between leaf transpiration and daily fluctuation of leaf water potential; δ13C: natural abundance of 13C.

Downloads

Download data is not yet available.

Author Biography

José Gándara, Departamento de Biología Vegetal, Facultad de Agronomía, Montevideo
Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR

References

Akhter J, Mahmood K, Tasneem M, Malik K, Naqvi M, Hussain F, Serraj R, 2005. Water-use efficiency and carbon isotope discrimination of Acacia ampliceps and Eucalyptus camaldulensis at different soil moisture regimes under semi-arid conditions. Biol Plantarum 49 (2): 269-272. https://doi.org/10.1007/s10535-005-0272-6

Allen R, Pereira L, Raes D, Smith M.,1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome, Italy.

Argus RE, Comer TD, Grierson PF, 2015. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens. Plant Cell Environ 38: 1189-1199. https://doi.org/10.1111/pce.12473

Battie-Laclau P, Delgado-Rojas JS, Christina M, Nouvellon Y, Bouillet JP, Piccolo MC, Moreira MZ, Gonçalves JL, Roupsar O, Laclau JP, 2016. Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. ‎For Ecol Manag 364: 77-89. https://doi.org/10.1016/j.foreco.2016.01.004

Brodribb T, Holbrook N, Edwards E, Gutierrez MV, 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ (26) 3: 443-450. https://doi.org/10.1046/j.1365-3040.2003.00975.x

Casparus C, Greyling I, Wingfield MJ, 2018. Dissimilar stem and leaf hydraulic traits suggest varying drought tolerance among co-occurring Eucalyptus grandis × E. urophylla clones. South For 80 (2): 175-184. https://doi.org/10.2989/20702620.2017.1315546

Choné X, Van Leeuwen C, Dubourdieu D, Gaudillère JP. 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87(4): 477-483. Craig H, 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12 (1-2): 133-149. https://doi.org/10.1016/0016-7037(57)90024-8

Comstock JP, 1998. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. and G.), a desert subshrub. Plant Cell Environ 21(10): 1029-1038. https://doi.org/10.1046/j.1365-3040.1998.00353.x

Da Silva JT, Hellmeister JT, Simoes JW, Tomazello M, 1999. Caracterização da madeira de sete espécies de eucaliptos para a construção civil: avaliações dendrométricas das árvores. Sci For 56: 113-124.

D'Ambrogio A, 1986. Manual de Técnicas en histología vegetal. Hemisferio Sur, Montevideo, Uruguay.

David TS, Ferreira MI, David JS, Pereira JS,1997. Transpiration from a mature Eucalyptus globgulus plantation in Portugal during a spring-summer period of progressively higher water deficit. Oecologia 110 (2): 153-159. https://doi.org/10.1007/PL00008812

Dharhi S, Khouja ML, Ben Jamaa ML, Ben Yahia K, Saadaoui E, 2018. An overview of adaptative responses to drought stress in Eucalyptus spp. For Stud 67 (1): 86-96. https://doi.org/10.1515/fsmu-2017-0014

Drake PL, Mendham DS, White DA, Ogden GN, Dell B, 2012. Water use and water-use efficiency of coppice and seedling Eucalyptus globulus Labill.: A comparison of stand-scale water balance components. Plant Soil 350: 221-235. https://doi.org/10.1007/s11104-011-0897-5

Drew DM, Downes GM, Grzeskowiak V, Naidoo T, 2009. Differences in daily stem size variation and growth in two-hybrid eucalypt clones. Trees 23: 585-595. https://doi.org/10.1007/s00468-008-0303-y

Dye P, 2000. Water use efficiency in South African Eucalyptus plantations: A review. South Afr For J 189: 17-26. https://doi.org/10.1080/10295925.2000.9631276

Eksteen AB, Grzeskowiak V, Jones NB, Pammenter NW, 2013. Stomatal characteristics of Eucalyptus grandis clonal hybrids in response to water stress. South For 75 (3): 105-111. https://doi.org/10.2989/20702620.2013.804310

England JR, Attiwill PM, 2011. Changes in stomatal frequency, stomatal conductance, and cuticle thickness during leaf expansion in the broad-leaved evergreen species, Eucalyptus regnans. Trees Struct Funct 25 (6): 987-996. https://doi.org/10.1007/s00468-011-0573-7

Farquhar GD, Ehleringer R, Hubick KT, 1989. Carbon Isotope Discrimination and Photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443

Faustino L, Bulfe N, Pinazo M, Monteoliva S, Graciano C, 2013. Dry weight partitioning and hydraulic traits in young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area. Tree Physiol 32: 241-251. https://doi.org/10.1093/treephys/tps129

Franks PJ, Drake PL, Froend RH, 2007. Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30 (1): 19-30. https://doi.org/10.1111/j.1365-3040.2006.01600.x

Héroult A, Lin YS, Bourne A, Medlyn BE, Ellsworth DS, 2013. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Plant Cell Environ 36 (2): 262-274. https://doi.org/10.1111/j.1365-3040.2012.02570.x

Kagan ML, Sachs T, 1991. Development of immature stomata: Evidence for epigenetic selection of a spacing pattern. Dev Biol 146 (1): 100-105. https://doi.org/10.1016/0012-1606(91)90450-H

Kallarackal J, Somen CK, 1997. An ecophysiological evaluation of the suitability of Eucalyptus grandis for planting in the tropics. ‎For Ecol Manag 95 (1): 53-61. https://doi.org/10.1016/S0378-1127(97)00004-2

Kallarackal J, Somen CK, 2008. Water Loss from Trees Plantations in the Tropics. ‎Curr Sci 94 (2): 201-210.

Lambers H, Chapin F S, Pons T L, 2008. Plant Physiological Ecology. Springer, New York. https://doi.org/10.1007/978-0-387-78341-3

Le Roux D, Stock WD, Bond WJ, Maphanga D, 1996. Dry mass allocation, water use efficiency, and δ13C in clones of Eucalyptus grandis, E. grandis × camaldulensis and E. grandis × nitens grown under two irrigation regimes. Tree Physiol (16): 497-502. https://doi.org/10.1093/treephys/16.5.497

Leuning R, Kriedemann PE, McMurtrie RE, 1991. Simulation of evapotranspiration by trees. Agric Water Manage 19: 205-221. https://doi.org/10.1016/0378-3774(91)90042-H

Lewis JD, Phillips NG, Logan BA, Hricko CR, Tissue DT, 2011. Leaf photosynthesis, respiration and stomatal conductance in six Eucalyptus species native to mesic and xeric environments growing in a common garden. Tree Physiol 31 (9): 997-1006. https://doi.org/10.1093/treephys/tpr087

Linderman T, Plata V, Sancho D, Oyhantcabal W, 2013. Clima de cambios. FAO, MGAP Uruguay. http://www.fao.org/climatechange/84982/es/.

MacFarlane C, Adams MA, 1998. δ13C of wood in growth-rings indicates cambial activity of drought stressed trees of Eucalyptus globulus. Func Ecol 12: 655-664. https://doi.org/10.1046/j.1365-2435.1998.00230.x

Martin D, 2017. Producción vegetal: forsetación. Anuario estadístico agropecuario. DIEA 2017: 177-121.

">https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2017/DIEA-Anuario2017.pdf

Martínez-Vilalta J, Sala A, Piñol J, 2004. The hydraulic architecture of Pinaceae: a review. Plant Ecol (171) 1: 3-13. https://doi.org/10.1023/B:VEGE.0000029378.87169.b1

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, SperryJ, West A, Williams DG et al., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178: 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

Meinzer FC, Woodruff DR, Marias DE, McCulloh KA, Sevanto S, 2014. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species. Plant Cell Environ 37 (11): 2577-2586. https://doi.org/10.1111/pce.12327

Mokotedi O, 2013. Water relations of Eucalyptus nitens x Eucalyptus grandis: is there interclonal variation in response to experimentally imposed water stress? South For: J For Sci 75 (4): 213-220. https://doi.org/10.2989/20702620.2013.858212

Morris J, Mann L, Collopy J, 1998. Transpiration and canopy conductance in a eucalypt plantation using shallow saline groundwater. Tree Physiol 18 (8-9): 547-555. https://doi.org/10.1093/treephys/18.8-9.547

Olbrich BW, Le Roux D, Poulter AG, Bond WJ, Stock WD, 1993. Variation in water use efficiency and ∆13C levels in Eucalyptus grandis clones. J Hydro 150 (2-4): 615-633. https://doi.org/10.1016/0022-1694(93)90128-V

Osório J, Pereira JS, 1994. Genotypic differences in water use efficiency and 13C discrimination in Eucalyptus globulus. Tree Physiol 14 (7-9): 871-882. https://doi.org/10.1093/treephys/14.7-8-9.871

Pohjonen V, Pukkala T, 1990. Eucalyptus globulus in Ethiopian forestry. For Ecol Manag 36 (1), 19-31. https://doi.org/10.1016/0378-1127(90)90061-F

Richardson F, Brodribb T, Jordan G, 2017. Amphistomatic leaf surfaces independently regulate gas exchange in response to variations in evaporative demand. Tree Physiol 37 (7): 869-878. https://doi.org/10.1093/treephys/tpx073

Sade M, Moshelion M, 2014. The dynamic isohydric-anisohydric behavior of plants upon fruit development: taking a risk for the next generation. Tree Phys 34: 1199-1202. https://doi.org/10.1093/treephys/tpu070

Seibt U, Rajabi A, Griffiths H, Berry J, 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecol 155: 441-454. https://doi.org/10.1007/s00442-007-0932-7

Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED, 2006. Interannual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20: 571-586. https://doi.org/10.1007/s00468-006-0072-4

Sperry JS, Adler FR, Campbell GS, Comstock JP, 1998. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21 (1): 347-359. https://doi.org/10.1046/j.1365-3040.1998.00287.x

Sperry JS, Wang Y, Wolfe BT, Mackay DS, Anderegg WR, McDowell NG, Pockman WT, 2016. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytol 212 (3): 577-589. https://doi.org/10.1111/nph.14059

Tyree M, Ewers F, 1991. The hydraulic architecture of trees and other woody plants. New Phytol 119: 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

Whitehead D, Beadle CL, 2004. Physiological regulation of productivity and water use in Eucalyptus: A review. For Ecol Manag 193 (1-2): 113-140. https://doi.org/10.1016/j.foreco.2004.01.026

Zang Z, Zhao P, McCarthy H, Ouyang L, Niu J, Zhu L, Ni G, Huang Y. Hydraulic balance of a Eucalyptus urophylla plantation in response to periodic drought in low subtropical China. 2016. Front Plant Sci 7: 1-12. https://doi.org/10.3389/fpls.2016.01346

Published
2020-11-16
How to Cite
Gándara, J., Ross, S., Quero, G., Dellacassa, P., Dellepiane, J., Figarola, G., & Viega, L. (2020). Differential water-use efficiency and growth among Eucalyptus grandis hybrids under two different rainfall conditions. Forest Systems, 29(2), e006. https://doi.org/10.5424/fs/2020292-16011
Section
Research Articles