Different levels of morphophysiological seed dormancy in Ribes alpinum and R. uva-crispa (Grossulariaceae) facilitate adaptation to differentiated habitats

  • Raquel Herranz-Ferrer Castilla-La Mancha University
  • Miguel Ángel Copete-Carreño Castilla-La Mancha University
  • José María Herranz-Sanz Castilla-La Mancha University
  • Elena Copete-Carreño Castilla-La Mancha University
  • Pablo Ferrandis-Gotor Castilla-La Mancha University

Abstract

Aim of the study: To study the germination ecology of two species of the genus Ribes to reveal their levels of morphophysiological dormancy (MPD) and to facilitate the production of plants from seeds, a key tool for population reinforcement.

Area of study: Experiments were carried out both outdoors and in the laboratory in Albacete (Spain) with seeds from the Meridional Iberian System mountain range.

Material and methods: Seeds from one population of Ribes alpinum and from other of Ribes uva-crispa were collected during several years. Embryo length, radicle and seedling emergence, and effects on germination of stratification and GA3 were analysed to determine the level of MPD.

Main results: In R. alpinum, embryo length in fresh seeds was 0.49 mm, needing to grow to 1.30 mm to germinate. Warm stratification (25/10ºC) promoted embryo length enlargement to 0.97 mm. Afterwards, seeds germinated within a wide temperature range. Embryo growth and seedling emergence occur late summer-early autumn. In R. uva-crispa, embryo length in fresh seeds was 0.52 mm, being 2.10 mm the minimal size to germinate. Embryos exposed to a moderately warm stratification (20/7ºC + 15/4ºC) followed by cold (5ºC) grew to 2.30 mm. Then, seeds germinated ≥ 80% when incubated at temperatures ≥ 15/4ºC. Embryos grew in autumn/early winter, and seedlings emerged late winter-early spring.

Research highlights: These results showed that R. alpinum seeds have a nondeep simple MPD while R. uva-crispa seeds have a nondeep complex MPD. Moreover, the different germinative models found for each species help explain their installation in distinct habitats.

Keywords: Ribes; seed dormancy break; radicle emergence; seedling emergence; nondeep simple and nondeep complex MPD.

Abbreviations used: Morphophysiological dormancy (MPD), morphological dormancy (MD), Gibberellic acid (GA3), months (m).

Downloads

Download data is not yet available.

Author Biographies

Raquel Herranz-Ferrer, Castilla-La Mancha University
Department of Plant Production and Agricultural Technology
Miguel Ángel Copete-Carreño, Castilla-La Mancha University
Department of Plant Production and Agricultural Technology
José María Herranz-Sanz, Castilla-La Mancha University
Department of Plant Production and Agricultural Technology
Elena Copete-Carreño, Castilla-La Mancha University
Department of Plant Production and Agricultural Technology
Pablo Ferrandis-Gotor, Castilla-La Mancha University
Department of Plant Production and Agricultural Technology

References

Baskin CC, Baskin JM, 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd edition. Academic Press, San Diego, USA. 666 pp.

Baskin JM, Baskin CC, 2004. A classification system for seed dormancy. Seed Sci Res 14: 1-16. https://doi.org/10.1079/SSR2003150

Blanca G, 1997. Ribes. In: Flora Ibérica; Castroviejo S et al. (eds). Vol. V. pp 86-94. Real Jardín Botánico, CSIC, Madrid. Spain.

Copete E, Herranz JM, Copete MA, Ferrandis P, 2014. Interpopulation variability on embryo growth, seed dormancy break, and germination in the endangered Iberian daffodil Narcissus eugeniae (Amaryllidaceae). Plant Species Biol 29(3): e-72-e84. https://doi.org/10.1111/1442-1984.12032

Copete E, Herranz JM, Ferrandis P, Baskin CC, Baskin JM, 2011. Physiology, morphology and phenology of seed dormancy-break and germination in the endemic Iberian species Narcissus hispanicus (Amaryllidaceae). Ann Bot 107: 1003-1016. https://doi.org/10.1093/aob/mcr030

DOCM, 1998. Decree 33/1998, of 5 May, that creates The Regional Catalogue of Threatened Species of Castilla-La Mancha. Diario Oficial de Castilla- La Mancha, Spain. 22: 3391-3398.

Donohue K, 2005. Seeds and seasons: interpreting germination timing in the field. Seed Sci Res 15: 175-187. https://doi.org/10.1079/SSR2005208

Elías F, Ruiz L, 1981. Estudio agroclimático de la región de Castilla-La Mancha. Consejería de Agricultura, Junta de Comunidades de Castilla-La Mancha, Toledo, Spain. 247 pp.

Fenner M, 1991. The effects of the parent environment on seed germinability. Seed Sci Res 1: 75-84. https://doi.org/10.1017/S0960258500000696

Fernández-Pascual E, Jiménez-Alfaro B, 2014. Phenotypic plasticity in seed germination relates differentially to overwintering and flowering temperatures. Seed Sci Res 24: 273-280. https://doi.org/10.1017/S0960258514000269

Finch-Savage WE, Leubner-Metzger G, 2006. Seed dormancy and the control of germination. New Phytol 171: 501-523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

Forbis TA, Floyd SK, De Querioz A, 2002. The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56: 2112-2125. https://doi.org/10.1111/j.0014-3820.2002.tb00137.x

Grubb PJ, 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52: 107-145. https://doi.org/10.1111/j.1469-185X.1977.tb01347.x

Gutterman Y, 2000. Maternal effects on seeds during development. In: Seeds: the ecology of regeneration in plant communities; Fenner M (ed). pp 59-84. CABI. Wallingford, UK. https://doi.org/10.1079/9780851994321.0059

Hidayati SN, Baskin JM, Baskin CC, 2001. Dormancy-breaking and germination requirements for seeds of Symphoricarpos orbiculatus (Caprifoliaceae). Am J Bot 88(8): 1444-1451. https://doi.org/10.2307/3558452

Jiménez-Alfaro B, Silveira FAO, Fidelis A, Poschold P, Commander LE, 2016. Seed germination traits can contribute better to plant community ecology. J Veg Sci 27: 637-645. https://doi.org/10.1111/jvs.12375

Mabberley DJ, 2008. Mabberley's plant-book, 3rd edition. Cambridge University Press, Cambridge, UK.

Martín-Herrero J, Cirujano S, Moreno M, Peris JB, Stübing G, 2003. La vegetación protegida en Castilla-La Mancha. Ed. Junta de Comunidades de Castilla-La Mancha. Toledo. Spain. 375 pp.

Mattana E, Pritchard HW, Porcedu M, Stuppy WH, Bacchetta G, 2012. Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in Ribes multiflorum ssp. sandalioticum (Grossulariaceae). Plant Biol 14: 77-87. https://doi.org/10.1111/j.1438-8677.2011.00476.x

Mattana E, Stuppy WH, Fraser R, Waller J, Pritchard HW, 2014. Dependency of seed dormancy types on embryo traits and environmental conditions in Ribes species. Plant Biol 16: 740-747. https://doi.org/10.1111/plb.12115

Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan E, Mathesius U, Poot P, Purugganan MD, Richards C, Valladares F, 2010. Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15: 684-692. https://doi.org/10.1016/j.tplants.2010.09.008

Pemán J, Navarro R, Nicolás JL, Prada MA, Serrada R, 2012. Producción y manejo de semillas y plantas forestales. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid, Spain. Vol. I. 1018 pp.

Porceddu M, Mattana E, Pritchard HW, Bacchetta G, 2017. Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth. Plant Biol 19(6): 983-993. https://doi.org/10.1111/plb.12610

Ruiz de la Torre J, 2006. Flora Mayor. Ed. Organismo Autónomo Parques Nacionales. Ministerio de Medio Ambiente. Madrid, Spain. 1759 pp.

Santiago A, Herranz JM, Copete E, Ferrandis P, 2013. Species-specific environmental requirements to break seed dormancy: implications for selection of regeneration niches in three Lonicera (Caprifoliaceae) species. Botany 91: 225-233. https://doi.org/10.1139/cjb-2012-0169

Vandelook F, Van Assche JA, 2008. Temperature requirements of seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann Bot 102: 865-875. https://doi.org/10.1093/aob/mcn165

Vandelook F, Van de Moer D, Van Assche JA, 2008. Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae. Funct Ecol 22: 470-478. https://doi.org/10.1111/j.1365-2435.2008.01385.x

Wagmann K, Hautekeete NC, Piquot Y, Meunier C, Schmitt SE, Van Dijk H, 2012. Seed dormancy distribution: explanatory ecological factors. Ann Bot 110: 1205-1219. https://doi.org/10.1093/aob/mcs194

Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P, 2011. Climate change and plant regeneration from seed. Glob Chang Biol 17: 2145-2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x

Walck JL, Hidayati SN, Okagami N, 2002. Seed germination ecophysiology of the Asian species Osmorhiza aristata (Apiaceae): Comparison with its North American congeners and implications for evolution of types of dormancy. Am J Bot 89(5): 829-835. https://doi.org/10.3732/ajb.89.5.829

Published
2020-11-16
How to Cite
Herranz-Ferrer, R., Copete-Carreño, M. Ángel, Herranz-Sanz, J. M., Copete-Carreño, E., & Ferrandis-Gotor, P. (2020). Different levels of morphophysiological seed dormancy in Ribes alpinum and R. uva-crispa (Grossulariaceae) facilitate adaptation to differentiated habitats. Forest Systems, 29(2), e017. https://doi.org/10.5424/fs/2020292-15932
Section
Research Articles