Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration?

  • Lukáš Bílek Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
  • Zdeněk Vacek Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
  • Stanislav Vacek Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
  • Daniel Bulušek Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
  • Rostislav Linda Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
  • Jan Král Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 16951 Prague 6. Suchdol
Keywords: pine silviculture, forest edge effect, stand quality, Central Europe

Abstract

Aim of the study: To describe the effect of stand edge after clearcut on the process of Scots pine (Pinus sylvestris L.) natural regeneration along the edge-to-interior gradient. The density, height, horizontal structure and quality of natural regeneration was evaluated.

Area of the study: Kokořínsko Protected Landscape Area, Northern Bohemia (Czech Republic). The study sites naturally host Scots pine Pinetum oligotrophicum with cover of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. in the herbal storey.

Material and methods: Two 40 × 40 m permanent research plots were situated at the forest edge, two adjacent plots were established within the forest stand as control plots. Differences in regeneration characteristics were tested by analysis of variance (ANOVA) followed by the Tukey HSD test. Interactions between regeneration characteristics and the distance from the edge were evaluated by Pearson correlation. The relationship between the top storey and natural regeneration was depicted by pair-correlation function. Principal components analysis was carried out to assess overall data structure.

Main results: Generally, the further from the stand edge, the lower natural regeneration density (r ≤ -0.64, p<0.001), mean height (r ≤ -0.54, p<0.001) and the best-quality promising individuals (r = -0.40, p<0.05) were found, whereas significant influence on overall average pine quality was not observed. The highest regeneration density (15,250 pcs/ha) was reached at a distance of 5-10 m from the stand edge.

Research highlights: The forest edge interior can become favourable location for natural regeneration and can be implemented into traditional regeneration approaches in pine regions.

Downloads

Download data is not yet available.

References

Aleksandrowicz-Trzcińska M, Drozdowski S, Brzeziecki B, Rutkowska P, Jabłońska B, 2014. Effects of different methods of site preparation on natural regeneration of Pinus sylvestris in Eastern Poland. Dendrobiology 71: 73-81.

Axelsson EP, Lundmark T, Högberg P, Nordin A, 2014. Belowground competition directs spatial patterns of seedling growth in Boreal forests in Fennoscandia. Forests 5 (9): 2106-2121. https://doi.org/10.3390/f5092106

Barbeito I, Fortin MJ, Montes F, Cañellas I, 2009. Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forest. Appl Veg Sci 12 (4): 488-503. https://doi.org/10.1111/j.1654-109X.2009.01043.x

Beckage B, Lavine M, Clark JS, 2005. Survival of tree seedlings across space and time: estimates from long-term count data. J Ecol 93 (6): 1177-1184. https://doi.org/10.1111/j.1365-2745.2005.01053.x

Benavides R, Rabasa SG, Granda E, Escudero A, Hódar JA, Martínez-Vilalta J, Rincón AM, Zamora R, Valladares F, 2013. Direct and indirect effects of climate on demography and early growth of Pinus sylvestris at the rear edge: changing roles of biotic and abiotic factors. PLoS One 8 (3): e59824. https://doi.org/10.1371/journal.pone.0059824

Besag J, 1977. Comments on Ripley's paper. J Roy Stat Soc A B39: 193-195.

Bílek L, Remeš J, Podrázský V, Rozenbergar D, Diaci J, Zahradník D, 2014. Gap regeneration in near-natural European beech forest stands in Central Bohemia-the role of heterogeneity and micro-habitat factors. Dendrobiology 71: 59-71.

Bílek L, Vacek S, Vacek Z, Remeš J, Král J, Bulušek D, Gallo J, 2016. How close to nature is close-to-nature pine silviculture? J For Sci 62 (1): 24-34. https://doi.org/10.17221/98/2015-JFS

Brazaitis G, Angelstam P, 2004. Influence of edges between old deciduous forest and clearcuts on the abundance of passerine hole-nesting birds in Lithuania. Ecol Bull 51: 209-217.

Burton PJ, 2002. Effects of clearcut edges on trees in the sub-boreal spruce zone of Northwest-Central British Columbia. Silva Fenn 36 (1): 329-352. https://doi.org/10.14214/sf.566

Castro J, Zamora R, Hódar JA, 2002. Mechanisms blocking Pinus sylvestis colonization of Mediterranean mountain meadows. J Veg Sci 13 (5): 725-731.

Churchill DJ, Larson AJ, Dahlgreen MC, Franklin JF, Hessburg PF, Lutz JA, 2013. Restoring forest resilience: from reference spatial patterns to silvicultural prescriptions and monitoring. For Ecol Manage 291: 442-457.

Clark PJ, Evans FC, 1954. Distance to nearest neighbour as a measure of spatial relationship in populations. Ecology 35: 445-453. https://doi.org/10.2307/1931034

Coban S, Colak AH, Rotherham ID 2016. Interactions between canopy cover density and regeneration cores of older saplings in Scots pine (Pinus sylvestris L.) stands. Forest Syst 25 (3): e073. https://doi.org/10.5424/fs/2016253-08429

Dynesius M, Åström M, Nilsson C, 2008. Microclimatic buffering by logging residues and forest edges reduces clear-cutting impacts on forest bryophytes. Appl Veg Sci 11: 345-354. https://doi.org/10.3170/2008-7-18457

Euskirchen ES, Chen J, Runcheng B, 2001. Effects on edge on plant communities in a managed landscape in northern Wisconsin. For Ecol Manage 148: 93-108.

Ewald J, 2007. Ein Pflanzensoziologisches Modell der Schattentoleranz von Baumarten in den Bayerischen Alpen A Phytosociological Model of Shade Tolerance of Tree Species in the Bavarian Alps. Forum Geobotanicum 3: 11-19.

Gini C, 1921. Measurement of inequality on income. Econ J 31: 22-43. https://doi.org/10.2307/2223319

Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ, 1999. A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29: 824-839. https://doi.org/10.1139/x98-112

Grigoriadis N, Spyroglou G, Grigoriadis S, Klapanis P, 2014. Effect of soil scarification on natural regeneration of mature scots pine (Pinus sylvestris) stand in Greece. Global NEST J 16 (4): 732-742. https://doi.org/10.30955/gnj.001320

Halme P, Allen KA, Auniņš A, Bradshaw RHW, Brūmelis G, Čada V, Clear JL, Eriksson AM, Hannon G, Hyvärinen E, et al., 2013. Challenges of ecological restoration: Lessons from forests in northern Europe. Biol Conserv 167: 248-256. https://doi.org/10.1016/j.biocon.2013.08.029

Hopkins B. Skellam JG, 1954. A new method of determining the type of distribution of plant individuals. Ann Bot 18: 213-227. https://doi.org/10.1093/oxfordjournals.aob.a083391

Ibáñez I, Schupp EW, 2002. Effects of litter, soil surface conditions, and microhabitat on Cerocarpus ledifolius Nutt. seedling emergence and establishment. J Arid Environ 52 (2): 209-221. https://doi.org/10.1006/jare.2002.0988

Kuuluvainen T, Juntunen P, 1998. Seedling establishment in relation to microhabitat variation in a windthrow gap in a boreal Pinus sylvestris forest. J Veg Sci 9 (4): 551-562. https://doi.org/10.2307/3237271

Kuuluvainen T, Aakala T, 2011. Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fenn 45 (5): 823-841. https://doi.org/10.14214/sf.73

Kuuluvainen T, Ylläsjärvi I, 2011. On the natural regeneration of dry heath forests in Finnish Lapland: a review of V. T. Aaltonen (1919). J For Res 26 (S10): 34-44. https://doi.org/10.1080/02827581.2011.517951

Loarie RS, Duffy PhB, Hamilton H, Asner GP, Field ChB, Ackerly DD, 2009. The velocity of climate chase. Nature 462: 1052-1055. https://doi.org/10.1038/nature08649

Marcos JA, Marcos E, Taboada A, Tárrega R, 2007. Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest. For Ecol Manage 247: 35-42.

Mason WL, Edwards C, Hale SE, 2004. Survival and early seedling growth of conifers with different shade tolerance in a Sitka spruce spacing trial and relationship to understorey light climate. Silva Fenn 38 (4): 357-370. https://doi.org/10.14214/sf.404

McCarthy J, 2001. Gap dynamics of forest trees: a review with particular attention to boreal forests. Environ Rev 9 (1): 1-59. https://doi.org/10.1139/a00-012

Mikeska M, Vacek S, Prausová R, Simon J, Minx T, Podrázský V, Malík V, Kobliha J, Anděl P, Matějka K, 2008. Typologické vymezení, struktura a management přirozených borů a borových doubrav v ČR. Lesnická práce, Kostelec nad Černými lesy, Czech Republic. 450 pp.

Montes F, Canellas I, 2007. The spatial relationships between post-crop remaining trees and the establishment of saplings in Pinus sylvestris stands in Spain. Appl Veg Sci 10 (2): 151-160. https://doi.org/10.1111/j.1654-109X.2007.tb00513.x

Montes F, Rubio A, Barbeito I, Cañellas I, 2008. Characterization of the spatial structure of the canopy in Pinus silvestris L. stands in Central Spain from hemispherical photographs. For Ecol Manage 255: 580-590.

Nilsson U, Örlander G, Karlsson M, 2006. Establishing mixed forests in Sweden by combining planting and natural regeneration—Effects of shelterwoods and scarification. For Ecol Manage 237 (1): 301-311.

Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG, 2002. Needle nutrients in geographically diverse Pinus sylvestris L. populations. Ann For Sci 59 (1): 1-18. https://doi.org/10.1051/forest:2001001

Pasanen H, Rouvinen S, Kouki J, 2016. Artificial canopy gaps in the restoration of boreal conservation areas: long-term effects on tree seedling establishment in pine-dominated forests. Eur J Forest Res 135 (4): 697-706. https://doi.org/10.1007/s10342-016-0965-8

Puettmann KJ, Wilson SMG, Baker SC, Donoso PJ, Drössler L, Amente G, Harvey BD, Knoke T, Yuanchang L, Nocentini S, Putz FE, Yoshida T, Bauhus J, 2015. Silvicultural alternatives to conventional even-aged forest management-what limits global adoption? For Ecosyst 2 (1): 8.

Puhlick JJ, Laughlin DC, Moor MM, 2012. Factors influencing ponderosa pine regeneration in the southwestern USA. For Ecol Manage 264: 10-19.

Pukkala T, Kuuluvainen T, Stenberg P, 1993. Below-Canopy distribution of photosynthetically active radiation and its relation to seedling growth in a boreal Pinus sylvestris stand: A simulation approach. Scand J Forest Res 8 (1-4): 313-325. https://doi.org/10.1080/02827589309382780

R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reynolds RT, Sánchez Meador AJ, Youtz JA, Nicolet T, Matonis MS, Jackson PL, De Lorenzo DG, Graves AD, 2013. Restoring composition and structure in southwestern frequent-fire forests: a science-based framework for improving ecosystem resiliency. United States Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA. 76 pp.

Rowlingson B, Diggle P, 2017. Splancs: Spatial and Space-Time Point Pattern Analysis. R package version 2.01-40. https://CRAN.R-project.org/package=splancs

Ruuska J, Siipilehto J, Valkonen, S, 2008. Effect of edge stands on the development of young Pinus sylvestris stands in southern Finland. Scand J Forest Res 23 (3): 214-226. https://doi.org/10.1080/02827580802098127

Ryyppö A, Iivonen S, Rikala R, Sutinen ML, Vapaavuori E, 1998. Responses of Scots pine seedlings to low root zone temperature in spring. Physiologia Plantarum 102 (4): 503-512. https://doi.org/10.1034/j.1399-3054.1998.1020404.x

Šálek L, Zahradník D, Marušák R, Jeřábková L, Merganič J. 2013. Forest edges in managed riparian forests in the eastern part of the Czech Republic. For Ecol Manage 305: 1-10.

Siipilethto J, 2006. Height distributions of Scots pine sapling stands affected by retained tree and edge stand competition. Silva Fenn 40 (3): 473-486.

Similä M, Junninen K (eds), 2012. Ecological restoration and management in Boreal forests: best practices from Finland. Metsähallitus, Natural Heritage Services, Vantaa, Finland. 54 pp.

Tuten MC, Sánchez Meador A, Fulé PZ, 2015. Ecological restoration and fine-scale forest structure regulation in southwestern ponderosa pine forests. For Ecol Manage 348: 57-67.

Uotila A, Kouki J, Kontkanen H, Pulkkinen P, 2002. Assessing the naturalness of boreal forests in eastern Fennoscandia. For Ecol Manage 161 (1): 257-277.

Vacek S, Vacek Z, Bílek L, Simon J, Remeš J, Hůnová I, Král J, Putalová T, Mikeska M, 2016. Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn 50 (4): 1564. https://doi.org/10.14214/sf.1564

Vacek S, Vacek Z, Remeš J, Bílek L, Hůnová I, Bulušek D, Putalová T, Král J, Simon J, 2017. Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees-Struct Funct 30 (5): 1599-1617. https://doi.org/10.1007/s00468-017-1572-0

Wagner S, Fischer H, Huth F, 2011. Canopy effects on vegetation caused by harvesting and regeneration treatments. Eur J Forest Res 130 (1): 17-40. https://doi.org/10.1007/s10342-010-0378-z

Wittich W, 1955. Standörtliche Bedingungen für die natürliche Verjüngung der Kiefer und für ihre Erziehung unter Schirm. Allg Forts Jagdtztg 109-177.

Published
2018-09-24
How to Cite
Bílek, L., Vacek, Z., Vacek, S., Bulušek, D., Linda, R., & Král, J. (2018). Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration?. Forest Systems, 27(2), e010. https://doi.org/10.5424/fs/2018272-12408
Section
Research Articles