Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México

  • Rodrigo Ramos-Madrigal Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, México
  • Héctor M. de los Santos-Posadas Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, México https://orcid.org/0000-0003-4076-5043
  • José René Valdez-Lazalde Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, México https://orcid.org/0000-0003-1888-6914
  • Efraín Velasco-Bautista Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, México https://orcid.org/0000-0002-1692-8984
  • Gregorio Ángeles-Pérez Postgrado en Ciencias Forestales, Colegio de Postgraduados. Carretera México-Texcoco km 36.5. 56264 Texcoco, Estado de México, México https://orcid.org/0000-0002-9550-2825
  • Alma Delia Ortiz-Reyes Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. Progreso 5. Barrio de Santa Catarina, 04010 Alcaldía Coyoacán, Ciudad de México, México https://orcid.org/0000-0002-6832-7566
Keywords: Algebraic difference approach, ALS, Dominant height, Forest inventory, Height growth

Abstract

Aim of study: To predict the productivity potential of a managed conifer forest by estimating the site index from Light Detection and Ranging (LiDAR) data.

Study area: Intensive Carbon Monitoring Site Atopixco, Hidalgo, Mexico.

Material and methods: A total of 329 observations from five remeasurements in permanent forest inventory sampling units were used to generate site index curves and metrics derived from a 2013 LiDAR scan. LiDAR elevation metrics were statistically related to field-observed dominant height (DH). Three models were fitted to predict DH as a function of LiDAR metrics, while nine height growth models were developed using the algebraic difference approach, at a base age of 40 years, using the ordinary least squares method and mixed effects models (MEM).

Main results: The 99th height percentile was the LiDAR metric that showed the greatest correlation with the observed DH. Its integration into a linear model was best suited to estimate DH with Adjusted Determination Coefficient (R2adj) of 0.97 and Root Mean Square Error (RMSE) of 0.31 m. The Hossfeld IV anamorphic model adjusted as MEM and autocorrelation corrected model showed the best performance for predicting DH growth with R2adj of 0.87 and RMSE of 2.11 m. The integration of both models into a Geographic Information System (GIS) allowed the spatially explicit construction of an accurate mosaic of the DH and site index to classify stand productivity in the study area.

Research highlights: Of the total area managed for timber purposes, 87% is classified as a heigh (≥31 m) and average (26 m) site index, while areas dedicated to conservation contain 13% of the area classified with low site index (≤21 m).

Downloads

References

Aidoo-Borsah A, Nazeer M, Sing-Wong M, 2023. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests 14(2095): 1-22. https://doi.org/10.3390/f14102095

Alder D (ed), 1980. Forest Volume Estimation and Yield Prediction: Yield prediction: Vol. FAO Forestry Paper (2nd ed.). Food and Agriculture Organization of the United Nations, Rome. 194 pp.

Ángeles-Pérez G, Méndez-López B, Valdez-Lazalde JR, Plascencia-Escalante FO, de los Santos-Posadas HM., Chávez-Aguilar G, Ortiz-Reyes, AD, Soriano-Luna, MÁ, Zaragoza-Castañeda Z, Ventura-Palomeque E, Martínez-López A, Wayson C, López-Merlín D, Olguín-Álvarez M, Carrillo-Negrete O, Maldonado-Montero V, 2015. Estudio de caso del Sitio de Monitoreo Intensivo del Carbono en Hidalgo. Colegio de Postgraduados, Texcoco, México.

Bengoa-Martínez JL, 1999. Estimación de la altura dominante de la masa a partir de la "altura dominante de parcela": ventajas frente a la altura dominante de Assman. For Syst 8(3): 311-321.

Castillo-López A, Santiago-García W, Vargas-Larreta B, Quiñonez-Barraza G, Solis-Moreno R, Corral Rivas JJ, 2018. Modelos dinámicos de índice de sitio para cuatro especies de pino en Oaxaca. Rev Mex Cienc For: 9(49). https://doi.org/10.29298/rmcf.v9i49.185

Chen Y, Zhu X, 2012. Site quality assessment of a Pinus radiata plantation in Victoria, Australia, using LiDAR technology. South Forests 74(4): 217-227. https://doi.org/10.2989/20702620.2012.741767

Cieszewski CJ, Bailey RL, 2000. Generalized Algebraic Difference Approach: Theory Based Derivation of Dynamic Site Equations with Polymorphism and Variable Asymptotes Dynamic Equation Modeling Background. Forest Sci 46(1): 116-126. https://doi.org/10.1093/forestscience/46.1.116

Clutter JL, Fortson JC, Piennar LV, Brister GH, Bailey RL, 1983. Timber management: a quantitative approach. John Wiley & Sons, Inc.

Coops NC, 2015. Characterizing forest growth and productivity using remotely sensed data. Curr For Rep 1(3): 195-205.https://doi.org/10.1007/s40725-015-0020-x

Cruz-Leyva IA, Valdez-Lazalde JR, Ángeles-Pérez G, de los Santos-Posadas HM, 2010. Modelación espacial de área basal y volumen de madera en bosques manejados de Pinus patula y P. teocote en el ejido Atopixco, Hidalgo. Madera Bosques 16(3): 75-97. https://doi.org/10.21829/myb.2010.1631168

Cruz-Ruiz F, 2004. Programa de Manejo Forestal para el aprovechamiento de recursos forestales maderables del Ejido Atopixco. Zacualtipán de Ángeles, Hidalgo, México.

Fang Z, Bailey RL, 2001. Nonlinear Mixed Effects Modeling for Slash Pine Dominant Height Growth Following Intensive Silvicultural Treatments. Forest Sci 47(3): 287-300. https://doi.org/10.1093/forestscience/47.3.287

Galeote-Leyva B, Valdez-Lazalde JR, Ángeles-Pérez G, de los Santos-Posadas HM, Romero-Padilla JM, 2022. Inventario asistido por LiDAR: efecto de la densidad de retornos y el diseño de muestreo sobre la precisión. Madera Bosques 28(2). https://doi.org/10.21829/myb.2022.2822330

Hernández-Ramos J, Hernández-Ramos A, Ordaz-Ruiz G, García-Espinoza GG, García-Magaña JJ, García-Cuevas X, 2022. Índice de sitio para plantaciones forestales de Pinus patula en el Estado de México. Madera Bosques 28(2). https://doi.org/10.21829/myb.2022.2822308

Hollinger DY, 2008. Defining a Landscape-Scale Monitoring Tier for the North American Carbon Program. In: Field Measurements for Forest Carbon Monitoring. A Landscape-Scale Approach; Hoover CM (ed). pp: 3-16. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-8506-2_1

Kozak A, Kozak R, 2003. Does cross validation provide additional information in the evaluation of regression models? Can J Forest Res 33(6): 976-987. https://doi.org/10.1139/x03-022

Lee SJ, Kim JR, Choi YS, 2013. The extraction of forest CO storage capacity using high-resolution airborne lidar data. GISci Remote Sens 50(2): 154-171. https://doi.org/10.1080/15481603.2013.786957

Li C, Chen Z, Zhou X, Zhou M, Li, 2023. Generalized models for subtropical forest inventory attribute estimations using a rule-based exhaustive combination approach with airborne LiDAR-derived metrics. GISci Remote Sens 60(1). https://doi.org/10.1080/15481603.2023.2194601

Machala M, Zejdová L, 2014. Forest mapping through Object-based image analysis of multispectral and LiDAR Aerial data. Eur J Remote Sens 47(1): 117-131. https://doi.org/10.5721/EuJRS20144708

Míguez C, Fernández C, 2023. Evaluating the Combined Use of the NDVI and High-Density Lidar Data to Assess the Natural Regeneration of P. pinaster after a High-Severity Fire in NW Spain. Remote Sens-Basel 15(6). https://doi.org/10.3390/rs15061634

Ortiz-Reyes AD, Valdez-Lazalde JR, de los Santos-Posadas HM, Ángeles-Pérez G, Paz-Pellat, F, Martínez-Trinidad T, 2015. Inventario y cartografía de variables del bosque con datos derivados de LiDAR: comparación de métodos. Madera Bosques 21(3): 111-128. https://doi.org/10.21829/myb.2015.213461

Palacios-Cruz DJ, de los Santos-Posadas HM, Ángeles-Pérez G, Fierros-González AM, Santiago-García W, 2020. Sistema de crecimiento y rendimiento para evaluar sumideros de carbono en bosques de Pinus patula Schiede ex Schltdl. et Cham. bajo aprovechamiento forestal. Agrociencia-Mexico 54: 241-254.

Pérez-Vázquez ZR, Ángeles-Pérez G, Chávez-Vergara B, Valdez-Lazalde JR, Ramírez-Guzmán ME, 2021. Enfoque espacial para modelación de carbono en el mantillo de bosques bajo manejo forestal maderable. Madera Bosques 27(1). https://doi.org/10.21829/myb.2021.2712122

QGIS Development Team, 2023. QGIS geographic information system (3.28.11). Open-Source Geospatial Foundation.

R development Core Team. (2023). R: A Language and Environment for Statistical Computing. (4.3.1). R Foundation for Statistical Computing, Vienna, Austria.

Ramírez-Martínez A, de los Santos-Posadas HM, Ángeles-Pérez G, González-Guillén MJ, Santiago-García W, 2020. Densidad inicial en el rendimiento maderable de Pinus patula con especies latifoliadas. Agrociencia-Mexico 54(4): 555-573. https://doi.org/10.47163/agrociencia.v54i4.2053

Rizzo-Martín I, Hirigoyen-Domínguez A, Arthus-Bacovich R, Varo-Martínez MÁ, Navarro-Cerrillo R, 2023. Site Index Estimation Using Airborne Laser Scanner Data in Eucalyptus dunnii Maide Stands in Uruguay. Forests 14(5): 1-13. https://doi.org/10.3390/f14050933

Santiago-García W, de los Santos-Posadas HM, Ángeles-Pérez G, Valdez-Lazalde JR, Corral-Rivas JJ, Rodríguez-Ortiz G, Santiago-García E, 2016. Modelos de crecimiento y rendimiento de totalidad del rodal para Pinus patula. Madera Bosques 21(3): 95-110. https://doi.org/10.21829/myb.2015.213459

Socha J, Hawryło P, Stereńczak K, Miścicki S, Tymińska-Czabańska L, Młocek W, Gruba P, 2020. Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes. Int J Appl Earth Obs 91. https://doi.org/10.1016/j.jag.2020.102129

Torres-Rojo JM, Valles-Gándara AG, 2007. Índice de productividad de sitios multiespecíficos a través de funciones de distancia en sitios forestales. Agrociencia-Mexico 41(6): 687-700.

Vargas-Larreta B, Aguirre-Calderón OA, Corral-Rivas JJ, Crecente-Campo F, Diéguez-Aranda U, 2013. A dominant height growth and site index model for Pinus pseudostrobus Lindl. in northeastern Mexico. Agrociencia-Mexico 47(1): 91-106.

Vargas-Larreta B, Álvarez-González JG, Corral-Rivas JJ, Calderón ÓAA, 2010. Construcción de curvas dinámicas de índice de sitio para Pinus cooperi blanco. Rev Fitotec Mex 33(4): 343-351. https://doi.org/10.35196/rfm.2010.4.343

Published
2024-12-30
How to Cite
Ramos-Madrigal, R., de los Santos-Posadas, H. M., Valdez-Lazalde, J. R., Velasco-Bautista, E., Ángeles-Pérez, G., & Ortiz-Reyes, A. D. (2024). Evaluation of potential productivity in coniferous forests by integrating field data and aerial laser scanning in Hidalgo, México. Forest Systems, 33(3), 20886. https://doi.org/10.5424/fs/2024333-20886
Section
Research Articles