Small-scale variation in available water capacity of the soil influences height growth of single trees in Southern Germany

  • Karl H. MELLERT Bavarian Office for Forest Genetics [Bayerisches Amt für Waldgenetik]. Forstamtsplatz 1, 83317 Teisendorf, Germany https://orcid.org/0000-0002-4263-5763
  • Gerhard SCHMIED Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Hans‑Carl‑von‑Carlowitz‑Platz 2, 85354 Freising, Germany https://orcid.org/0000-0003-2424-7705
  • Vincent BUNESS Bavarian State Institute of Forestry, Hans‑Carl‑von‑Carlowitz‑Platz 1, 85354 Freising, Germany https://orcid.org/0000-0003-0428-2669
  • Mathias STECKEL Forst Baden‑Württemberg (AöR), Forstbezirk Ulmer Alb, Schloßstr. 34, 89079 Ulm‑Wiblingen, Germany https://orcid.org/0000-0002-1940-5441
  • Enno UHL Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Hans‑Carl‑von‑Carlowitz‑Platz 2, 85354 Freising, Germany https://orcid.org/0000-0002-7847-923X
  • Muhidin ŠEHO Bavarian Office for Forest Genetics [Bayerisches Amt für Waldgenetik]. Forstamtsplatz 1, 83317 Teisendorf, Germany https://orcid.org/0000-0001-9926-4564
  • Hans PRETZSCH Chair for Forest Growth and Yield Science, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Hans‑Carl‑von‑Carlowitz‑Platz 2, 85354 Freising, Germany https://orcid.org/0000-0002-4958-1868
Keywords: climatic niche, environmental niche, forest genetic studies, microsite, plus tree selection, soil water regime, tree breeding

Abstract

Aim of study: Detecting possible small-scale soil effects on height growth of single trees in monospecific stands of three important tree species (Abies alba, Fagus sylvatica, and Picea abies).

Area of study: 37 mature stands along an ecological gradient in Southern Germany from the cold and wet “optimal niche zone” to warmer and drier niche zones, including gravelly soils with poor water supply.

Material and methods: Measurement of achieved height and age of 15 to 20 sample trees per stand. Estimation of the available water capacity of the soil (AWC) in close proximity to sample trees based on soil texture following the German soil survey guidelines. Examining height growth depending on niche zone and AWC.  

Main results: On sites (stand level) with the lowest water regime, height growth increased significantly with AWC of microsites. The estimated effect on height growth over the whole range of AWC values was almost 8 m at those sites. In contrast, the effect was negative on optimal sites. For intermediate and marginal sites, the effect was positive, albeit not significant for marginal sites.

Research highlights: To our knowledge this is the first study about small-scale effects of AWC on height growth of single trees in temperate European forests. Small-scale soil variability should be considered in future scientific studies and practical evaluation, involving single tree performance at stands with low water regime. This seems particularly important in genetic environmental associations studies and in the process of selecting trees for breeding purposes in such stands.

Downloads

Download data is not yet available.

References

AK STOK, 1996. Forstliche Standortsaufnahme. AK Standortskartierung, IHW-Verlag, Eching bei München. 400 pp.

Barnes BV, Pregitzer KS, Spies TA, Spooner VH, 1982. Ecological forest site classification. J Forestry 80(8): 493-498.

Bates D, Maechler M, Bolker B, Walker S, 2015. fitting linear mixed-effects models using lme4. J Stat Softw 67(1): 1-48. https://doi.org/10.18637/jss.v067.i01

BayLWF, 2019. Praxishilfe Klima-Boden Baumartenwahl Band I. Bayerische Landesanstalt für Wald und Forstwirtschaft (Hg.), Freising, 110 pp.

BayLWF, 2020. Praxishilfe Klima-Boden Baumartenwahl Band II. Bayerische Landesanstalt für Wald und Forstwirtschaft (Hg.), Freising, 124 pp.

Bolte A, Höhl M, Hennig P, Schad T, Kroiher F, Seintsch B, et al., 2021. Zukunftsaufgabe Waldanpassung 76: 12-16.

Bončina A, Klopčič M, Trifković V, Ficko A, Simončič P, 2023. Tree and stand growth differ among soil classes in semi-natural forests in central Europe. Catena 222: 106854. https://doi.org/10.1016/j.catena.2022.106854

Bormann H, 2007. Analysis of the suitability of the German soil texture classification for the regional scale application of physical based hydrological model. Adv Geosci 11: 7-13. https://doi.org/10.5194/adgeo-11-7-2007

Brandl S, Falk W, Klemmt HJ, Stricker G, Bender A, Rötzer T, et al., 2014. Possibilities and limitations of spatially explicit site index modelling for spruce based on National Forest Inventory data and digital maps of soil and climate in Bavaria (SE Germany). Forests 5(11): 2626-2646. https://doi.org/10.3390/f5112626

Burggraef L, Schmidt-Walter P, Hilbrig L, Schmidt M, 2016. Standort-Leistungsmodelle als Grundlage für realistische Waldentwicklungsszenarien unter Klimawandel. Tagungsband der Jahrestagung der Sektion Ertragskunde im DVFFA: 8-19.

Chakraborty T, Reif A, Matzarakis A, Saha S, 2021. How does radial growth of water-stressed populations of European beech (Fagus sylvatica L.) trees vary under multiple drought events? Forests 12(2): 129. https://doi.org/10.3390/f12020129

Clark J, Wilson T, 2005. The importance of plus-tree selection in the improvement of hardwoods. Quart J Forest 99(1): 45-50.

Cornelius J, 1994. The effectiveness of plus-tree selection for yield. Forest Ecol Manage 67(1-3): 23-34. https://doi.org/10.1016/0378-1127(94)90004-3

Dorado‐Liñán I, Piovesan G, Martínez‐Sancho E, Gea‐Izquierdo G, Zang C, Cañellas I, et al., 2019. Geographical adaptation prevails over species‐specific determinism in trees' vulnerability to climate change at Mediterranean rear‐edge forests. Glob Chang Biol 25(4): 1296-1314. https://doi.org/10.1111/gcb.14544

EEA, 2017. https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature/global-and-european-temperature-assessment-5.

Ellenberg HH, 1988. Vegetation ecology of central Europe. Cambridge University Press.

Fady B, Aravanopoulos FA, Alizoti P, Mátyás C, von Wühlisch G, Westergren M, et al., 2016. Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecol Manage 375: 66-75. https://doi.org/10.1016/j.foreco.2016.05.015

Fick SE, Hijmans RJ, 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Climat 37(12): 4302-4315. https://doi.org/10.1002/joc.5086

Frei ER, Gossner MM, Vitasse Y, Queloz V, Dubach V, Gessler A, et al., 2022. European beech dieback after premature leaf senescence during the 2018 drought in northern Switzerland. Plant Biol 24(7): 1132-1145. https://doi.org/10.1111/plb.13467

Hammel K, Kennel M, 2001. Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Heinrich Frank, Forstliche Forschungsberichte München 185: pp 135.

Hampe A, Petit RJ, 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5): 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.x

Hartl C, Düthorn E, Tejedor E, Kirchhefer AJ, Timonen M, Holzkämper S, et al., 2021. Micro-site conditions affect Fennoscandian forest growth. Dendrochronologia 65: 1257-1287. https://doi.org/10.1016/j.dendro.2020.125787

Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, et al., 2015. Package 'raster'. R package.

Huang S, Titus SJ, 1993. An index of site productivity for uneven-aged or mixed-species stands. Can J For Res 23: 558-562. https://doi.org/10.1139/x93-074

Jeník J, 1998. Biodiversity of the Hercynian mountains of Central Europe. Pirineos 151: 83-99. https://doi.org/10.3989/pirineos.1998.v151-152.120

Johnson WM, 1963. The pedon and the polypedon. Soil Sci Soc Am Proc 27 (2): 212-215. https://doi.org/10.2136/sssaj1963.03615995002700020034x

Jump AS, Hunt JM, Penuelas J, 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12: 2163-2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x

KA5 - AG Boden, 2005. Bodenkundliche Kartieranleitung (German Soil Classification Handbook), 5th ed, Hannover [in German].

Kölling C, Hoffmann M, Gulder HJ, 1996. Soil chemistry depth gradients as characteristic state variables of forest ecosystems. Zeitschrift fuer Pflanzenernaehrung und Bodenkunde (Germany).

Kolb E, Göttlein A, 2014. Modifikation of the forest ecological regions of Germany with respect to the soil potential for sustainable forest management. Allg Forst- u J-Ztg 11/12(185): 249-260.

Kolb E, Mellert KH, Göttlein A, 2018. Nährstoffstatus naturnaher Böden in Europa. Waldökologie, Landschaftsforschung und Naturschutz 18: 5-13.

Lebourgeois F, Breda N, Ulrich E, Granier A, 2005. Climate-tree-growth relationships of European beech Fagus sylvatica L. in the French Permanent Plot Network (RENECOFOR). Trees-Struct Funct 19: 385-401. https://doi.org/10.1007/s00468-004-0397-9

Lévesque M, Walthert L, Weber P, 2016. Soil nutrients influence growth response of temperate tree species to drought. J Ecol 104(2): 377-387. https://doi.org/10.1111/1365-2745.12519

Martinez del Castillo E, Zang CS, Buras A, Hacket-Pain A, Esper J, Serrano-Notivoli R, et al., 2022. Climate-change-driven growth decline of European beech forests. Commun Biol 5(1): 1-9. https://doi.org/10.1038/s42003-022-03107-3

Mauri A, Strona G, San-Miguel-Ayanz J, 2017. EU-Forest, a high-resolution tree occurrence dataset for Europe. Scientific data 4(1): 1-8. https://doi.org/10.1038/sdata.2016.123

Mellert KH, Kölling C, Rücker G, Schubert A, 2008. Small-scale variation at Bavarian soil monitoring sites - A contribution to estimate the uncertainty of the German Level-I Monitoring of soils (BZE II). Waldökologie, Landschaftsforschung und Naturschutz 6: 43-61.

Mellert KH, Ewald J, 2014a. Nutrient limitation and site-related growth potential of Norway spruce (Picea abies [L.] Karst) in the Bavarian Alps. Eur J For Res 133(3): 433-451. https://doi.org/10.1007/s10342-013-0775-1

Mellert KH, Ewald J, 2014b. Regionalizing nutrient values of vegetation to assess site fertility of mountain forests in the Bavarian Alps. Folia Geobotanica 49(3): 407-423. https://doi.org/10.1007/s12224-013-9167-z

Mellert KH, Deffner V, Küchenhoff H, Kölling C, 2015. Modeling sensitivity to climate change and estimating the uncertainty of its impact: a probabilistic concept for risk assessment in forestry. Ecol Model 316: 211-216. https://doi.org/10.1016/j.ecolmodel.2015.08.014

Mellert KH, Ewald J, Hornstein D, Dorado-Liñán I, Jantsch M, Taeger S, et al., 2016. Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg's quotient. Eur J For Res 135(1): 137-152. https://doi.org/10.1007/s10342-015-0924-9

Mellert KH, Lenoir J, Winter S, Kölling C, Čarni A, Dorado-Liñán I, et al., 2018. Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. Eur J For Res 137(1): 79-92. https://doi.org/10.1007/s10342-017-1092-x

Mellert KH, Janssen A, Šeho M, 2021. Anpassung an Klima und Boden bestimmt die Eignung von Herkünften im Klimawandel. LWF aktuell 131: 43-45.

Michel A, Kirchner T, Prescher AK, Schwärzel K (eds), 2021. Forest condition in Europe: The 2021 Assessment. ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention). Eberswalde: Thünen Institute.

Neebe W, Hofmann F, 1982. Der Gesamt-Ca-Gehalt des Bodens als wesentliche Fruchtbarkeitskennziffer forstlicher Standorte. Archiv für Naturschutz und Landschaftsforschung 22: 19-25. https://doi.org/10.1515/9783112532522-004

Pfenninger M, Reuss F, Kiebler A, Schönnenbeck P, Caliendo C, Gerber S, et al., 2021. Genomic basis for drought resistance in European beech forests threatened by climate change. Elife 10: e65532. https://doi.org/10.7554/eLife.65532

Pyatt G, Ray D, Fletcher J, 2001. An ecological site classification for forestry in Great Britain. Forestry Commission Bulletin 124.

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rabbel I, Neuwirth B, Bogena H, Diekkrüger B, 2018. Exploring the growth response of Norway spruce (Picea abies) along a small-scale gradient of soil water supply. Dendrochronologia 52: 123-130. https://doi.org/10.1016/j.dendro.2018.10.007

Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R, 2015. A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24(17): 4348-4370. https://doi.org/10.1111/mec.13322

Rohner B, Waldner P, Lischke H, Ferretti M, Thürig E, 2018. Predicting individual-tree growth of central European tree species as a function of site, stand, management, nutrient, and climate effects. Eur J For Res 137(1): 29-44. https://doi.org/10.1007/s10342-017-1087-7

Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, et al., 2023. Nutrient regime modulates drought response patterns of three temperate tree species. Sci Total Environ 868: 161601. https://doi.org/10.1016/j.scitotenv.2023.161601

Silva BM, Silva ÉAD, Oliveira GCD, Ferreira MM, Serafim ME, 2014. Plant-available soil water capacity: estimation methods and implications. Rev Bras Ciênc Solo 38: 464-475. https://doi.org/10.1590/S0100-06832014000200011

Tesch SD, 1980. The evolution of forest yield determination and site classification. For Ecol Manage 3: 169-182. https://doi.org/10.1016/0378-1127(80)90014-6

Thomas FM, Rzepecki A, Lücke A, Wiekenkamp I, Rabbel I, Pütz T, et al., 2018. Growth and wood isotopic signature of Norway spruce (Picea abies) along a small-scale gradient of soil moisture. Tree Physiol 38(12): 1855-1870. https://doi.org/10.1093/treephys/tpy100

Thurm EA, Hernandez L, Baltensweiler A, Ayan S, Rasztovits E, Bielak K, et al., 2018. Alternative tree species under climate warming in managed European forests. For Ecol Manage 430: 485-497. https://doi.org/10.1016/j.foreco.2018.08.028

Toraño Caicoya A, Pretzsch H, 2021. Stand density biases the estimation of the site index especially on dry sites. Can J For Res 51(7): 1050-1064. https://doi.org/10.1139/cjfr-2020-0389

Veihmeyer FJ, Hendrickson AH, 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Sci 32(3): 181-194. https://doi.org/10.1097/00010694-193109000-00003

West E, Morley PJ, Jump AS, Donoghue DN, 2022. Satellite data track spatial and temporal declines in European beech forest canopy characteristics associated with intense drought events in the Rhön Biosphere Reserve, central Germany. Plant Biol 24(7): 1120-1131. https://doi.org/10.1111/plb.13391

Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD, 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agr For Meteorol 106(2): 153-168. https://doi.org/10.1016/S0168-1923(00)00199-4

Published
2023-07-03
How to Cite
MELLERT, K. H., SCHMIED, G., BUNESS, V., STECKEL, M., UHL, E., ŠEHO, M., & PRETZSCH, H. (2023). Small-scale variation in available water capacity of the soil influences height growth of single trees in Southern Germany. Forest Systems, 32(2), e013. https://doi.org/10.5424/fs/2023322-20197
Section
Research Articles