Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands

Keywords: simultaneous modeling system, tree biomass-carbon, weighted non-linear-SUR

Abstract

Aim of study: To develop and cross-validate simultaneous modeling systems for estimating components and total tree aboveground biomass and carbon of Litsea glutinosa in an agroforestry model with cassava.

Area of study: In the Central Highlands of Vietnam, the agroforestry model widely planted on fallow land of ethnic minorities is a mixture of 65% L. glutinosa in combination with 35% cassava (Manihot esculenta).

Material and methods: Twenty-two 300-m2 circular sample plots were located, representing the range of tree age, plantation density, and a 6-7 year rotation cycle. In each sample plot, one selected tree with a diameter at breast height equal to the plot quadratic mean diameter was destructively sampled. The relationships among tree aboveground biomass and carbon (AGB/AGC) and their components with dendrometric variables diameter, height, age, and crown area were examined using factor analysis. To fit systems of equations for AGB/AGC and their components, we compared two methods: weighted nonlinear least-squares (WNLS) and weighted nonlinear seemingly unrelated regression (WNSUR).

Main results: The results of the leave-one-out cross-validation showed that the simultaneous WNSUR approach to modeling systems of four tree components, total biomass, and carbon provided better results than independent WNLS models.

Research highlights: The simultaneous WNSUR modeling system provided improved and reliable estimates of tree components, total biomass, and carbon for L. glutinosa in an agroforestry model with cassava compared to independently fitted WNLS models.

Downloads

Download data is not yet available.

References

Affleck DLR, Dieguez-Aranda U, 2016. Additive nonlinear biomass equations: A likelihood-based approach. For Sci 62(2): 129-140. https://doi.org/10.5849/forsci.15-126

Akaike H, 1973. Information theory as an extension of the maximum likelihood principle. 2nd Int Symp on Information Theory; Petrov BN & Csaki FE (Eds.). Akademiai Kiado, Budapest, pp: 267-281.

Basuki TM, van Laake PE, Skidmore AK, Hussin YA, 2009. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests. For Ecol Mgmt 257: 1684-1694. https://doi.org/10.1016/j.foreco.2009.01.027

Bertsch-Hoermann B, Egger C, Gaube V, Gingrich S, 2021. Agroforestry trade-offs between biomass provision and aboveground carbon sequestration in the alpine Eisenwurzen region, Austria. Reg Environ Change (2021) 21(77): 1-15. https://doi.org/10.1007/s10113-021-01794-y

Chave J, Andalo A, Brown S, Cairns MA, Chambers JQ, Eamus D, et al., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oceologia 145: 87-99. https://doi.org/10.1007/s00442-005-0100-x

Chave J, Mechain MR, Burquez A, Chidumayo E, Colgan MS, Delitti WBC, et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biol 20: 3177-3190. https://doi.org/10.1111/gcb.12629

Cheng H, Garrick DJ, Fernando RL, 2017. Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J Anim Sci Biotechnol 8: 38. https://doi.org/10.1186/s40104-017-0164-6

Davidian M, Giltinan DM, 1995. Nonlinear mixed effects models for repeated measurement data. Chapman & Hall, 356 pp.

DeCoster J, 1998. Overview of factor analysis. http://www.stat-help.com/notes.html [Sept 25, 2021].

Dhyani SK, Ram A, Newaj R, Handa AK, Dev I, 2020. Agroforestry for carbon sequestration in tropical India. In: Carbon management in tropical and sub-tropical terrestrial systems; Ghosh P et al. (eds). Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_19

Dutca I, Mather R, Blujdea VNB, Ioraș F, Olari M, Abrudan LV, 2018. Site-effects on biomass allometric models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass Bioenerg 116: 8-16. https://doi.org/10.1016/j.biombioe.2018.05.013

Gonzalez-Benecke CA, Zhao D, Samuelson LJ, Martin TA, Leduc DJ, Jack SB, 2018. Local and general above-ground biomass functions for Pinus palustrics trees. Forests 9(6): 310. https://doi.org/10.3390/f9060310

Heuze V, Tran G, Aubriot D, 2015. Indian laurel (Litsea glutinosa). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/15834 [Sept 27, 2021].

Hinsinger DD, Strijk JS, 2016. Toward phylogenomics of Lauraceae: The complete chloroplast genome sequence of Litsea glutinosa (Lauraceae), an invasive tree species on Indian and Pacific Ocean islands. Plant Gene 9(3): 71-79. https://doi.org/10.1016/j.plgene.2016.08.002

Huy B, 2009a. CO2 sequestration estimation of Litsea glutinosa species in agroforestry model in Mang Yang district, Gia lai province of the Central Highlands of Vietnam. Technical Report. SIDA, ICRAF, 44 pp.

Huy B, 2009b. Increased income and absorbed carbon found in Litsea glutinosa - cassava agroforestry model. APANews (Asia-Pacific Agroforestry Newsletter), FAO, SEANAFE, No. 35(2009): 4-5.

Huy B, 2014. CO2 sequestration estimation for the Litsea - casava agroforestry model in the Central Highlands of Vietnam. World Congr on Agroforestry, New Delhi, 10-13 Feb 2014. ICAR, World Agroforestry Center, Global Initiatives. ISBN: 978-92-9059-372-0.

Huy B, Kralicek K, Poudel KP, Phuong VT, Khoa PV, Hung ND, Temesgen H, 2016a. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For Ecol Mgmt 382: 193-205. https://doi.org/10.1016/j.foreco.2016.10.021

Huy B, Poudel KP, Temesgen H, 2016b. Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Vietnam: Selection of eco-regional or pantropical models. For Ecol Mgmt 376: 276-282. https://doi.org/10.1016/j.foreco.2016.06.031

Huy B, Poudel KP, Kralicek K, Hung ND, Khoa PV, Phuong VT, Temesgen H, 2016c. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam. Forests 7(180): 1-19. https://doi.org/10.3390/f7080180

Huy B, Tinh NT, Poudel KP, Frank BM, Temesgen H, 2019. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For Ecol Mgmt 437: 156-174. https://doi.org/10.1016/j.foreco.2019.01.038

Huy B, Truong NQ, Khiem NQ, Poudel KP, Temesgen H, 2022. Stand growth modeling system for planted teak (Tectona grandis L.f.) in tropical highlands. Trees For People 9: 100308. https://doi.org/10.1016/j.tfp.2022.100308

IPCC, 2006. Forest Land. Chapter 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS et al. (eds). IGES, Japan. 83 pp.

Kim JO, Mueller CW, 1978. Introduction to factor analysis: What it is and how to do it. Series: Quantitative applications in the social sciences, 07-013. Sage Univ Paper, Newbury Park, CA, USA, 75 pp.

Kralicek K, Huy B, Poudel KP, Temesgen H, Salas C, 2017. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For Ecol Mgmt 390: 147-156. https://doi.org/10.1016/j.foreco.2017.01.030

Mohammad N, Sonkar M, Pardhi Y, Rana PK, Dahayat A, 2020. Assessment of morphological variation and association studies in Litsea glutinosa (Lour.) C.B. Rob. from Central India. J Sust For 39(2): 207-220. https://doi.org/10.1080/10549811.2019.1632720

Mulia R, Nguyen MP (Eds), 2021. Diversity of agroforestry practices in Vietnam. World Agroforestry (ICRAF), Hanoi, Vietnam, 129 pp.

Pandey AK, Mandal AK, 2012. Sustainable harvesting of Terminalia arjuna (Roxb.) Wight & Arnot (Arjuna) and Litsea glutinosa (Lour.) Robinson (Maida) Bark in Central India. J Sust For 31: 294-309. https://doi.org/10.1080/10549811.2011.583865

Parresol BR, 2001. Additivity of nonlinear biomass equations. Can J For Res 31(5): 865-878. https://doi.org/10.1139/x00-202

Picard N, Saint-André L, Henry M, 2012. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. FAO, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, 215 pp.

Poudel KP, Temesgen H, 2016. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees. Can J For Res 46: 77-87. https://doi.org/10.1139/cjfr-2015-0256

R Core Team, 2021. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html

Sanquetta CR, Behling A, Corte APD, Netto SP, Schikowski AB, 2015. Simultaneous estimation as alternative to independent modeling of tree biomass. Ann For Sci 72(8): 1099-1112. https://doi.org/10.1007/s13595-015-0497-2

SAS Inst., 2014. SAS/ETS® 13.2 User's Guide. Chapter 19: The MODEL Procedure. SAS Inst. Inc., Cary, NC, USA. pp. 1067-1373.

Sumithregowda AH, Venkatarangaiah K, Honnenahally KM, Manjunath VN, 2017. Cytotoxicity and oral acute toxicity studies of Litsea glutinosa C. B (ROB) stem bark ethanol extract. Pharmacogn J 9(6): 880-886. https://doi.org/10.5530/pj.2017.6.138

Tiwari SK, Mishra S, Prakash R, Pandey A, Goswami MP, Sharma A, 2010. Standardization of clonal propagation techniques of Litsea glutinosa (Maida lakdi) through stem branch cuttings. J Trop Forest 26: 23-25.

Trautenmüller JW, Netto SP, Balbinot R, Watzlawick LF, Corte APD, Sanquetta CR, Behling A, 2021. Regression estimators for aboveground biomass and its constituent parts of trees in native southern Brazilian forests. Ecol Ind 130: 108025. https://doi.org/10.1016/j.ecolind.2021.108025

Useful Tropical Plants, 2021. Litsea glutinosa. http://tropical.theferns.info/viewtropical.php?id=Litsea+glutinosa [Sept. 27, 2021].

Walkley A, Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37: 29-38. https://doi.org/10.1097/00010694-193401000-00003

Wua Y, Jina Y, Donga L, Lia Y, Zhanga C, Guib M, Zhanga X, 2017. New lignan glycosides from the root barks of Litsea glutinosa. Phytochem Lett 20: 259-262. https://doi.org/10.1016/j.phytol.2017.05.005

Zeng W, Zhang L, Chen X, Cheng Z, Ma K, Li Z, 2017. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Can J For Res 47: 467-475. https://doi.org/10.1139/cjfr-2016-0342

Published
2023-03-01
How to Cite
HUY, B., KHIEM, N. Q., TRUONG , N. Q., POUDEL, K. P., & TEMESGEN, H. (2023). Additive modeling systems to simultaneously predict aboveground biomass and carbon for Litsea glutinosa of agroforestry model in tropical highlands. Forest Systems, 32(1), e006. https://doi.org/10.5424/fs/2023321-19780
Section
Research Articles