Mathematical system based on taper functions for distribution by structural product of culms in three giant bamboo taxa

  • Casimiro ORDÓÑEZ-PRADO INIFAP, Centro de Investigación Regional Golfo Centro, Campo Experimental San Martinito. Ctra. Federal Mexico-Puebla km 56.5. 74100 Tlahuapan, Pue., Mexico https://orcid.org/0000-0001-8520-8406
  • Juan C. TAMARIT-URIAS INIFAP, Centro de Investigación Regional Golfo Centro, Campo Experimental San Martinito. Ctra. Federal Mexico-Puebla km 56.5. 74100 Tlahuapan, Pue., Mexico https://orcid.org/0000-0003-3597-4510
  • Adan NAVA-NAVA Colegio de Postgraduados. Ctra. Mexico-Texcoco km 36.5. 56230 Texcoco, Mex., Mexico https://orcid.org/0000-0002-8637-3734
  • Melchor RODRÍGUEZ-ACOSTA INIFAP, Centro de Investigación Regional-Golfo Centro, Campo Experimental Ixtacuaco. Ctra. Martínez de la Torre-Tlapacoyan km 4.5. 93655 Tlapacoyan, Ver., Mexico https://orcid.org/0000-0001-9771-2685
  • Martha E. FUENTES-LÓPEZ INIFAP, Centro de Investigación Regional Golfo Centro, Campo Experimental San Martinito. Ctra. Federal Mexico-Puebla km 56.5. 74100 Tlahuapan, Pue., Mexico https://orcid.org/0000-0002-2818-365X
Keywords: diameter profile, primary product, round material, use in construction, Guadua aculeata, Guadua angustifolia, Bambusa oldhamii

Abstract

Aim of study: To generate a mathematical system to distribute structural products of bamboo culms.

Study area: Northeastern region of the state of Puebla, Mexico.

Materials and methods: Eighty-seven culms of Bambusa oldhamii Munro, Guadua aculeata Rupr. and Guadua angustifolia Kunth were collected in Puebla, Mexico. Four taper functions were evaluated, the one with the best predictive capacity was fitted to model the diameter over and under wall together with a wall thickness model. The fitting strategy consisted of a system of additive equations using Weighted-Nonlinear Seemingly Unrelated Regression (WNSUR) procedure with autocorrelation correction, in combination with the Dummy Variable technique.

Main results: The Fang & Bailey case 1-a model was selected to describe the diameter over and under wall; the Cao and Papper model was used to model the wall thickness. The R2adj of the system fitted were 0.977, 0.944 and 0.918, and RMSE values 0.186 cm, 0.200 cm and 0.134 cm, for diameter over wall, diameter under wall, and wall thickness, respectively. G. angustifolia had the greatest taper and wall thickness, followed by G. aculeata. The highest proportion of primary product was presented by G. angustifolia. The system generated had parameters specific for each bamboo taxon.

Research highlights: The diameter profile of bamboo culms can be modeled by taper functions. A mathematical system for distribution by structural product type was developed consisting of: (1) a taper model for the diameter over wall and, (2) a function to estimate the commercial height.

Downloads

Download data is not yet available.

References

Aguirre-Cadena JF, Ramírez-Valverde B, Cadena-Iñiguez J, Juárez-Sánchez JP, Caso-Barrera L, Martínez-Carrera D, 2018. Biomasa y carbono en Guadua angustifolia y Bambusa oldhamii en dos comunidades de la sierra Nororiental de Puebla, México. Rev Biol Trop 66(4): 1701-1708. https://doi.org/10.15517/rbt.v66i4.33364

Barrio-Anta M, Castedo-Dorado F, Diéguez-Aranda U, Álvarez-González JG, Parresol BR, Rodríguez-Soalleiro R, 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can J For Res 36(6): 1461-1474. https://doi.org/10.1139/x06-028

Camarillo-Cuenca AY, León-Merino A, Sangerman-Jarquín DM, Hernández-Juárez M, Zamora-Martínez MC, 2020. Aspectos socioeconómicos del aprovechamiento del bambú en una comunidad rural de Veracruz, México. Rev Mex Cienc For 11(62): 31-54. https://doi.org/10.29298/rmcf.v11i62.815

Cao QV, Pepper WD, 1986. Predicting inside bark diameter for shortleaf, loblolly and longleaf pines. South J Appl For 10(4): 220-224. https://doi.org/10.1093/sjaf/10.4.220

Ceccon E, Gómez-Ruiz PA, 2019. Las funciones ecológicas de los bambúes en la recuperación de servicios ambientales y en la restauración productiva de ecosistemas. Rev Biol Trop 67(4): 679-691.

Cedeño-Valdiviezo A, Irigoyen-Castillo J, 2011. El bambú en México. Rev Arq Urb 6: 223-243.

Correal FF, 2020. Bamboo design and construction. In: Nonconventional and vernacular construction materials: Characterisation, properties and applications, 2nd ed; Harries KA, Sharma B (eds). Woodhead Publ, Cambridge, MA, USA, pp: 521-559. https://doi.org/10.1016/B978-0-08-102704-2.00019-6

Demaerschalk JP, 1972. Converting volume equations to compatible taper equations. For Sci 18(3): 241-245. https://doi.org/10.1093/forestscience/18.3.241

Diéguez-Aranda U, Burkhart HE, Amateis RL, 2006. Compatible taper function for Scots pine plantations in northwestern Spain. Can J For Res 36(5): 1190-1205. https://doi.org/10.1139/x06-008

Du H, Mao F, Li X, Zhou G, Xu X, Han N, et al., 2018. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE J Sel Top Appl Earth Obs Remote Sens 11(5): 1458-1471. https://doi.org/10.1109/JSTARS.2018.2800127

Fang Z, Bailey RL, 1999. Compatible volume and taper models with coefficients for tropical species on Hainan Island in Southern China. For Sci 45(1): 85-100.

Fang Z, Borders BE, Bailey RL, 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci 46(1): 1-12.

García, E, 2004. Modificaciones al sistema de clasificación climática de Köppen, 5ª ed. Instituto de Geografía, Universidad Nacional Autónoma de México. Cd. de México, Mexico, 98 pp.

Hernández-Pérez D, De los Santos-Posadas HM, Ángeles-Pérez G, Valdez-Lazalde JR, Volke-Haller VH, 2013. Funciones de ahusamiento y volumen comercial para Pinus patula Schltdl. et Cham. en Zacualtipán, Hidalgo. Rev Mex Cienc For 4(16): 34-45. https://doi.org/10.29298/rmcf.v4i16.439

Hernández-Ramos J, De los Santos-Posadas HM, Valdez-Lazalde JR, Tamarit-Urias JC, Ángeles-Pérez G, Hernández-Ramos A, et al., 2017. Sistema compatible de ahusamiento y volumen comercial para plantaciones de Eucalyptus urophylla en Tabasco, México. Acta Univ 27(6): 40-52. https://doi.org/10.15174/au.2017.1484

Hernández-Santiago A, Torres-Hoyos D, 2020. Sistema constructivo con Guadua aculeata para la producción social de la vivienda. Rev Ciencia 22(1): 57-71. https://doi.org/10.24133/ciencia.v22i1.1290

Inoue A, Sato M, Shima H, 2021. A new taper index based on form‑factor: application to three bamboo species (Phyllostachys spp.). Eur J For Res 140(6): 1533-1542. https://doi.org/10.1007/s10342-021-01416-6

Kozak A, Munro D, Smith J, 1969. Taper functions and their application in forest inventory. For Chron 45(4): 278-283. https://doi.org/10.5558/tfc45278-4

Kozak A, 1997. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can J For Res 27(5): 619-629. https://doi.org/10.1139/x97-011

Lenhart JD, Clutter JL, 1971. Cubic-foot yield tables for old-field loblolly pine plantations in the Georgia Piedmont. Forest Research Council Report 22. Piedmont, GA, USA.

Liese W, Welling J, Tang TKH, 2015. Utilization of bamboo. In: Bamboo the plant and it uses; Liese W, Köhl M (eds.). Springer Verlag, Hamburg, Germany, pp. 299-346. https://doi.org/10.1007/978-3-319-14133-6_10

Lorenzo R, Lee C, Oliva-Salinas JG, Ontiveros-Hernández MJ, 2017. BIM Bamboo: a digital design framework for bamboo culms. Proc Inst Civ Eng: Struct Build 170(4): 295-302. https://doi.org/10.1680/jstbu.16.00091

McTague JP, Weiskittel A, 2021. Evolution, history, and use of stem taper equations: A review of their development, application, and implementation. Can J For Res 51(2): 210-235. https://doi.org/10.1139/cjfr-2020-0326

Montgomery DC, Runger GC, 2018. Applied statistics and probability for engineers, 7th edition. John Wiley & Sons, Hoboken, NJ, USA, 720 pp.

Muñoz-Flores HJ, Sáenz-Reyes JT, Hernández-Ramos J, Orozco-Gutiérrez G, Barrera-Ramírez R, 2021. Plantación de cuatro especies de bambú establecidas en el trópico seco de Michoacán, México. Rev Mex Cienc For 12(65): 45-66. https://doi.org/10.29298/rmcf.v12i65.788

Nath AJ, Sileshi GW, Das AK, 2018. Bamboo based family forests offer opportunities for biomass production and carbon farming in North East India. Land Use Pol 75: 191-200. https://doi.org/10.1016/j.landusepol.2018.03.041

Ordóñez-Prado C, Tamarit-Urias JC, Buendía-Rodríguez E, Orozco-Gutiérrez G, 2022. Estimación e inventario de biomasa y carbono del bambú nativo Guadua aculeata Rupr. en Puebla, México. Trop Subtrop Agroecosyst 25: 047. https://doi.org/10.56369/tsaes.3787

Picard N, Saint-André L, Henry M, 2012. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. FAO and CIRAD, Montpellier, 215 pp. https://www.fao.org/3/i3058e/i3058e.pdf [10 Apr 2022].

R Development Core Team, 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rodríguez F, Lizarralde I, Bravo F, 2015. Comparison of stem taper equations for eight major tree species in the Spanish Plateau. Forest Syst 24(3): e034. https://doi.org/10.5424/fs/2015243-06229

Rodríguez F, Molina C, 2003. Análisis de modelos de perfil del fuste y estudio de cilindridad para tres clones de chopo (Populus x euramericana) en Navarra. Invest Agrar: Sist Recur For 12(3): 73-85.

Ruiz-Sánchez E, Romero-Guzmán R, Flores-Argüelles A, Ortiz-Brunel JP, Clark LG, 2021. Chusquea contrerasii and C. guzmanii (Poaceae, Bambusoideae, Bambuseae, Chusqueinae), two new endemic species from Jalisco, Mexico. Phytotaxa 497(3): 285-297. https://doi.org/10.11646/phytotaxa.497.3.7

Sanquetta CR, Sanquetta MNI, Corte APD, Rodrigues AL, Mognon F, 2015. Estimação do volume aparente de colmos de Bambusa oldhamii e Bambusa vulgaris. Agroambiente 9(2): 167-174. https://doi.org/10.18227/1982-8470ragro.v9i2.2218

SAS Institute Inc., 2011. SAS/ETS® 9.3 user's guide. SAS I.I, Cary, NC, USA.

Stängle SM, Dormann CF, 2018. Modelling the variation of bark thickness within and between European silver fir (Abies alba Mill.) trees in southwest Germany. Int J For Res 91(3): 283-294. https://doi.org/10.1093/forestry/cpx047

Tamarit-Urias JC, De los Santos-Posadas HM, Aldrete A, Valdez-Lazalde JR, Ramírez-Maldonado H, Guerra-De la Cruz V, 2014. Sistema de cubicación para árboles individuales de Tectona grandis L. f. mediante funciones compatibles de ahusamiento-volumen. Rev Mex Cienc For 5(21): 58-74. https://doi.org/10.29298/rmcf.v5i21.358

Tewari VP, Singh B, 2018. Total wood volume equation for Tectona grandis Linn F. stands in Gujarat, India. J For Environ Sci 34(4): 313-320.

Toledo-Bruno AG, Marin RA, Medina MAP, Puno GR, Villarta RO, Punoz RR, 2017. Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area. Glob J Environ Sci Manag 3(4): 363-372.

Torres-Ávila D, De los Santos-Posadas H, Velázquez-Martínez A, Tamarit-Urias JC, 2020. Ahusamiento y volumen comercial de tres procedencias de pinos tropicales en plantaciones forestales de Veracruz, México. Madera y Bosques 26(3): e2631890. https://doi.org/10.21829/myb.2020.2631890

Trujillo D, 2016. Grading of bamboo. International Network for Bamboo and Rattan (INBAR). Beijing, China. https://www.inbar.int/wp-content/uploads/2020/05/1491896803.pdf [15 Apr 2022].

Ulak S, Ghimire K, Gautam R, Bhandari SK, Poudel KP, Timilsina Y, et al., 2022. Predicting the upper stem diameters and volume of a tropical dominant tree species. J For Res 33(6): 1725-1737. https://doi.org/10.1007/s11676-022-01458-5

Vonderach C, Kändler G, Dormann CF, 2018. Consistent set of additive biomass functions for eight tree species in Germany fit by nonlinear seemingly unrelated regression. Ann For Sci 75(2): 1-27. https://doi.org/10.1007/s13595-018-0728-4

Xu Y, He P, Xin S, Jiang L, 2020. Study on additive equation systems of stem taper and bark thickness of Dahurian Larch. Sci Silvae Sin 56(12): 60-66. https://doi.org/10.3390/f12101302

Xu Y, Jiang L, Shahzad MK, 2021. A newly built model of an additive stem taper system with total disaggregation model structure for Dahurian Larch in Northeast China. Forests 12(10): 1302. https://doi.org/10.3390/f12101302

Yadav M, Mathur A, 2021. Bamboo as a sustainable material in the construction industry: An overview. Mater Today: Proc 43: 2872-2876. https://doi.org/10.1016/j.matpr.2021.01.125

Zhang S, Sun J, Duan A, Zhang J, 2021. Variable-exponent taper equation based on multilevel nonlinear mixed effect for Chinese Fir in China. Forests 12(2): 126. https://doi.org/10.3390/f12020126

Zhang X, Jiang L, 2015. Inside bark diameter prediction models for Dahurian Larch. For Res 28(1): 67-73.

Published
2023-06-12
How to Cite
ORDÓÑEZ-PRADO, C., TAMARIT-URIAS, J. C., NAVA-NAVA, A., RODRÍGUEZ-ACOSTA, M., & FUENTES-LÓPEZ, M. E. (2023). Mathematical system based on taper functions for distribution by structural product of culms in three giant bamboo taxa. Forest Systems, 32(2), e010. https://doi.org/10.5424/fs/2023322-19641
Section
Research Articles