Effect of heat treatment on hardness, density and color of Populus × canadensis ‘I-214’ wood

Keywords: physical-mechanical properties, CIELab system, wood quality


Aim of study: To evaluate the effect of heat treatment (HT) on hardness, density and color of Populus × canadensis ´I-214´ (poplar) wood.

Area of study: 15-years-old poplar wood from Pomona, Río Negro, Argentina.

Material and methods: 352 samples were exposed to different HT schedules: 120ºC, 160ºC, 180ºC and 200°C for 45 min, 90 min, 135 min and 180 min. Hardness, density and color were determined before and after each HT combination. Hardness and density tests were performed following the specifications of IRAM standards and wood color was determined according to CIELab system.

Main results: Hardness improved significantly at 160°C for 45 min and 90 min in comparison with control (14.34% and 9.08%, respectively) whereas this property was improved at 120°C in all cases without significant differences. The 200°C: 45 min schedule showed the worst performance with a 20.26% hardness loss. Density was lower than the control in all schedules with losses ranging from 2.50% to 10.00%. Color became darker (decrease in L value, increase in a and b values) as HT intensity increased (mainly temperature), with changes becoming evident at 180°C and 200°C.

Research highlights: HT on P. × canadensis ‘I-214’ improved its hardness under two HT schedules, although was not enough to extend the feasible applications, since it still belongs to a category of “soft” wood. Hardness and density did not show a clear correlation and color of poplar wood became darker as HT intensity increased.


Download data is not yet available.


Baysal E, Kart S, Toker H, Degi̇rmentepe S, 2014. Some physical characteristics of thermally modified oriental- beech wood. Maderas-Cienc Tecnol 16(3): 291-298. https://doi.org/10.4067/S0718-221X2014005000022

Boonstra M, 2008. A two-stage thermal modification of wood. PhD. Thesis. Laboratory of Wood Technology, Ghent University, Belgium. https://hal.univ-lorraine.fr/tel-01748345/document

Boonstra MJ, Acker J, Tjeerdsma BF, Kegel EV, 2007. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann For Sci 64: 679-690. https://doi.org/10.1051/forest:2007048

Borůvka V, Zeidler A, Holeček T, Dudík R, 2018. Elastic and strength properties of heat-treated beech and birch wood. Forests 9(4): 197. https://doi.org/10.3390/f9040197

Cademartori PH, Schneid E, Gatto DA, Stangerlin D, Beltrame R, 2013. Thermal modification of Eucalyptus grandis wood: Variation of colorimetric parameters. Maderas-Cienc Tecnol 15(1): 57-64. https://doi.org/10.1590/S1516-14392012005000136

Cao Y, Jiang J, Lu J, Huang R, Jiang J, Wu Y, 2012. Color change of Chinese fir through steam-heat treatment. Bioresources 7(3): 2809-2819. https://bioresources.cnr.ncsu.edu/resources/color-change-of-chinese-fir-through-steam-heat-treatment/

Chen Y, Fan Y, Gao J, Stark NM, 2012. The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. Bioresources 7(1): 1157-1170. https://doi.org/10.15376/biores.7.1.1157-1170

Chu DM, Xue L, Zhang Y, Kang L, Mu J, 2016. Surface characteristics of poplar wood with high-temperature heat treatment: wettability and surface brittleness. Bioresources 11(3): 6948-6967. https://doi.org/10.15376/biores.11.3.6948-6967

Dzurenda L, 2018. The shades of color of Quercus robur L. wood obtained through the processes of thermal treatment with saturated water vapor. Bioresources 13 (1): 1525-1533. https://doi.org/10.15376/biores.13.1.1525-1533

Elaieb M, Candelier K, Pétrissans A, Dumarçay S, Gérardin P, Pétrissans M, 2015. Heat treatment of Tunisian soft wood species: Effect on the durability, chemical modifications and mechanical properties. Maderas-Cienc Tecnol 17(4): 699-710. https://doi.org/10.4067/S0718-221X2015005000061

Esteves B, Pereira H. 2009. Wood modification by heat treatment: A review. Bioresources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.Esteves

Esteves BM, Domingos IJ, Pereira HM, 2008. Pine wood modification by heat treatment in air. Bioresources 3(1): 142-154. https://doi.org/10.15376/biores.3.1.142-154

Fehér S, Koman S, Borcsok Z, Taschner R, 2014. Modification of hardwood veneers by heat treatment for enhanced colours. Bioresources 9(2): 3456-3465. https://doi.org/10.15376/biores.9.2.3456-3465

Gong M, Lamason C, Li L, 2010. Interactive effect of surface densification and post-heat-treatment on aspen wood. J Mater Process Technol 210: 293-296. https://doi.org/10.1016/j.jmatprotec.2009.09.013

Griebeler CGO, Matos JLMD, Muniz GIBD, Nisgoski S, Batista DC, Rodríguez CI, 2018. Colour responses of Eucalyptus grandis wood to the Brazilian process of thermal modification. Maderas-Cienc Tecnol 20(4): 661-670. https://doi.org/10.4067/S0718-221X2018005041201

Güller B, 2012. Effects of heat treatment on density, dimensional stability, and colour of Pinus nigra wood. Afr J Biotechnol 11(9): 2204-2209. https://doi.org/10.5897/AJB11.3052

Gündüz G, Aydemir D, 2009. Some physical properties of heat-treated hornbeam (Carpinus betulus L.) wood. Dry Technol 27(5): 714-720. https://doi.org/10.1080/07373930902827700

Gündüz G, Korkut S, Korkut DS, 2008. The effects of heat treatment on physical and technological properties and surface roughness of Camiyan Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood. Biores Technol 99(7): 2275-2280. https://doi.org/10.1016/j.biortech.2007.05.015

Gündüz G, Korkut S, Aydemir D, Bekar I, 2009. The density, compression strength and surface hardness of heat treated hornbeam (Caroinus betulus) wood. Maderas-Cienc Tecnol 11(1): 61-70. https://doi.org/10.4067/S0718-221X2009000100005

Hermoso E, Fernández-Golfín J, Conde M, Troya MT, Mateo R, Cabrero J, Conde M, 2015. Caracterización de la madera aserrada de Pinus radiata modificada térmicamente. Maderas-Cienc Tecnol 17(3): 493-504. https://doi.org/10.4067/S0718-221X2015005000044

Herrera-Díaz R, Sepúlveda-Villarroel V, Torres-Mella J, Salvo L, Llano-Ponte R, Salinas C, et al., 2019. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine. Eur J Wood Wood Prod 77: 661-671. https://doi.org/10.1007/s00107-019-01424-9

Herrera-Díaz R, Sepúlveda-Villarroel V, Pérez-Peña N, Salvo-Sepúlveda L, Salinas-Lira C, Llano-Ponte R, Ananías RA, 2017. Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine. Dry Technol 36: 537-544. https://doi.org/10.1080/07373937.2017.1342094

Hidayat W, Qi Y, Jang JH, Febriant F, Lee SH, Kim NH, 2016. Effect of treatment duration and clamping on the properties of heat-treated okan wood. Bioresources 11(4): 10070-10086. https://doi.org/10.15376/biores.11.4.10070-10086

IRAM, 1971. IRAM 9570: Método de ensayo de la dureza Janka. Instituto Argentino de Normalización y Certificación, Buenos Aires. https://catalogo.iram.org.ar/#/normas/detalles/7190

IRAM, 1985. IRAM 9544: Método para la determinación de la densidad aparente. Instituto Argentino de Normalización y Certificación, Buenos Aires. https://catalogo.iram.org.ar/#/normas/detalles/7170

Kesik HI, Korkut S, Hiziroglu S, Sevik H, 2014. An evaluation of properties of four heat treated wood species. Indus Crop Prod 60: 60-65. https://doi.org/10.1016/j.indcrop.2014.06.001

Kocaefe D, Poncsák S, Boluk Y, 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources 3(2): 517-537. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_2_Kocaefe_PB_ThermalTreatment_Birch_Aspen

Korkut S, Hiziroglu S, 2013. Selected properties of heat-treated eastern red cedar (Juniperus virginiana L.) wood. Bioresources 8(3): 4756-4765. https://doi.org/10.15376/biores.8.3.4756-4765

Korkut S, Akgül M, Dundar T, 2008. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresour Technol 99(6): 1861-1868. https://doi.org/10.1016/j.biortech.2007.03.038

Korkut DS, Hiziroglu S, Aytin A, 2013. Effect of heat treatment on surface characteristics of wild cherry wood. Bioresources 8(2): 1582-1590. https://doi.org/10.15376/biores.8.2.1582-1590

Kozakiewicz P, Drożdżek M, Laskowska A, Grześkiewicz M, Bytner O, Radomski A, Zawadzki J, 2019. Effects of thermal modification on the selected physical properties of sapwood and heartwood of black poplar (Populus nigra L.). Bioresources 14(4): 8391-8404. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/Biores_14_4_8391_Kozakiewicz_Thermal_Modification_Black_Poplar

Kučerová V, Lagana R, Výbohová E, Hýrošová T, 2016. The effect of chemical changes during heat treatment on the color and mechanical properties of fir wood. Bioresources 11(4): 9079-9094. https://doi.org/10.15376/biores.11.4.9079-9094

Lekounougou S, Kocaefe D, 2014. Effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of black spruce (Picea mariana). Wood Mat Science Eng 9(2): 59-66. https://doi.org/10.1080/17480272.2013.869256

Ming-Li L, Chun-feng L, Yan-long L, 2019. Physical and mechanical properties of modified poplar wood by heat treatment and impregnation of sodium silicate solution. Wood Res 64(1): 145-154.

Moliński W, Roszyk E, Jabloński A, Puszyński J, Cegiela J, 2016. Mechanical parameters of thermally modified ash wood determined by compression in radial direction. Maderas-Cienc Tecnol 18(4): 577-586. https://doi.org/10.4067/S0718-221X2016005000050

Moliński W, Roszyk E, Jabłoński A, Puszyński J, Cegieła J, 2018. Mechanical parameters of thermally modified ash wood determined on compression in tangential direction. Maderas-Cienc Tecnol 20(2): 267-276. https://doi.org/10.4067/S0718-221X2018005021001

Nasir V, Nourian S, Avramidis S, Cool J, 2018. Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of "group method of data handling" (GMDH) neural network. Holzforschung 73: 381-392. https://doi.org/10.1515/hf-2018-0146

Ockajova A, Barcík Š, Kucerka M, Koleda P, Korcok M, Vyhnáliková Z, 2019. Wood dust granular analysis in the sanding process of thermally modified wood versus its density. Bioresources 14(4): 8559-8572. https://bioresources.cnr.ncsu.edu/resources/wood-dust-granular-analysis-in-the-sanding-process-of-thermally-modified-wood-versus-its-density/

Panshin A, De Zeeuw C, 1980. Textbook of wood technology. Structure, identification, properties, and uses of the commercial woods of the United States and Canada, 4th ed. McGraw-Hill, NY.

Pratiwi LA, Darmawan W, Priadi T, George B, Merlin A, Gérardin C, et al., 2019. Characterization of thermally modified short and long rotation teaks and the effects on coatings performance. Maderas-Cienc Tecnol 21(2): 209-222. https://doi.org/10.4067/S0718-221X2019005000208

Priadi T, Suharjo AAC, Karlinasari L, 2019. Dimensional stability and colour change of heat-treated young teak wood. Int Wood Prod J 3: 119-125. https://doi.org/10.1080/20426445.2019.1679430

R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Salca E, Hiziroglu S, 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Mater Des 62: 416-423. https://doi.org/10.1016/j.matdes.2014.05.029

Shi JL, Kocaefe D, Zhang J, 2007. Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Roh Werkst 65: 255-259. https://doi.org/10.1007/s00107-007-0173-9

Sikora A, Kačík F, Gaff M, Vondrová V, Bubeníková T, Kubovský I, 2018. Impact of thermal modification on color and chemical changes of spruce and oak wood. J Wood Sci 64: 406-416. https://doi.org/10.1007/s10086-018-1721-0

Sözbir GD, Bektaş İ, Ak AK, 2019. Influence of combined heat treatment and densification on mechanical properties of poplar wood. Maderas-Cienc Tecnol 21(4): 481-492. https://doi.org/10.4067/S0718-221X2019005000405

Spavento EM, 2015. Caracterización y mejora tecnológica de la madera de Populus x euramericana I-214 (Dode) Guinier, austral y boreal, con fines estructurales. Doctoral tesis, Universidad de Valladolid, Spain. https://uvadoc.uva.es/handle/10324/16541

Srinivas K, Pandey KK, 2012. Effect of heat treatment on color changes, dimensional stability, and mechanical properties of wood. J Wood Chem Technol 32(4): 304-316. https://doi.org/10.1080/02773813.2012.674170

Tuong VM, Jian L, 2010. Effect of heat treatment on the change in color and dimensional stability of acacia hybrid wood. Bioresources 5(2): 1257-1267. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_05_2_1257_Tuong_Li_Heat_Treatment_Color_Acacia

Ulker O, Aslanova F, Hiziroglu S, 2018. Properties of thermally treated yellow poplar, southern pine, and eastern red cedar. Bioresources 13(4): 7726-7737. https://doi.org/10.15376/biores.13.4.7726-7737

Van Nguyen TH, Nguyen TT, Di JX, Do KTL, Guo M, 2018. Using artificial neural networks (ANN) for modeling predicting hardness change of wood during Heat Treatment. IOP Conf. Ser.: Mater Sci Eng 394(3): 032044. https://doi.org/10.1088/1757-899X/394/3/032044

Wei YX, Wang MJ, Zhang P, Chen Y, Gao JM, Fan YM, 2017. The role of phenolic extractives in color changes of locust wood (Robinia pseudoacacia) during heat treatment. Bioresources 12(4): 7041-7055. https://bioresources.cnr.ncsu.edu/resources/the-effect-of-heat-treatment-on-the-chemical-and-color-change-of-black-locust-robinia-pseudoacacia-wood-flour/

Yang L, Han T, Liu Y, Yin Q, 2021. Effects of vacuum heat treatment and wax impregnation on the color of Pterocarpus macrocarpus Kurz. Bioresources 16(1): 954-963. https://doi.org/10.15376/biores.16.1.954-963

How to Cite
Taraborelli, C., Monteoliva, S., Keil, G., & Spavento, E. (2022). Effect of heat treatment on hardness, density and color of Populus × canadensis ‘I-214’ wood. Forest Systems, 31(3), e023. https://doi.org/10.5424/fs/2022313-19558
Research Articles