Carbon storage in tree biomass dispersed in pastures in the arid Caribbean region of Colombia

  • Darwin F. LOMBO Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Motilonia, Km 5, vía Becerril-Agustín Codazzi, Cesar, Colombia https://orcid.org/0000-0002-5005-4264
  • Esteban BURBANO Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Motilonia, Km 5, vía Becerril-Agustín Codazzi, Cesar, Colombia https://orcid.org/0000-0001-5056-9893
  • Jaime A. ARIAS Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Motilonia, Km 5, vía Becerril-Agustín Codazzi, Cesar, Colombia https://orcid.org/0000-0003-1744-4997
  • Milton RIVERA Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Motilonia, Km 5, vía Becerril-Agustín Codazzi, Cesar, Colombia. https://orcid.org/0000-0003-4547-2100
Keywords: trees diversity, species use, tropical dry forest, greenhouse gas mitigation, livestock, ecosystems services

Abstract

Aim of study: To determine the importance in terms of carbon sequestration of dispersed trees in pasture lands as a greenhouse gas (GHG) mitigation measure.

Area of study: The study was carried out in the municipality of Agustin Codazzi (Cesar Department, Colombia), between October 2020 and March 2021.

Material and methods: We characterized 43.57 hectares dispersed amongst sixteen plots and all trees with a diameter at breast height > 10 cm were measured. Allometric equations were used to estimate aboveground biomass storage and species were classified in terms of use: timber products (TP) and non-timber products (NTP).

Main results: A total of 750 trees were registered, 10 families and 28 species, of which NTP and TP represented 60.71% and 32.1% respectively. Aboveground carbon stock in trees in pastures was estimated at 7.15 + 4.8 Mg C ha-1. The most abundant species were Guazuma ulmifolia Lam. and Albizia saman (Jacq.) Merr.

Research highlights: NTP species present a high potential for carbon storage and provide livestock assets. Placing value on carbon storage in rangelands can offset the low opportunity cost of trees in pastures by providing incentives for carbon storage, conservation, and recovery of threatened species.

Downloads

Download data is not yet available.

References

Álvarez E, Benitez D, Velásquez C, Cogollo A, 2013. Stem basic density of dry forests trees in the Colombian Caribbean coast. Intropica 8(1): 17-28.

Aparajita S, Rout GR, 2010. Molecular analysis of Albizia species using AFLP markers for conservation strategies. J Genet 89(1): 95-99. https://doi.org/10.1007/s12041-010-0017-y

Armenteras D, Rodríguez N, 2014. Forest deforestation dynamics and drivers in Latin America: A review since 1990. Colombia Forestal 17(2): 233-246. https://doi.org/10.14483/udistrital.jour.colomb.for.2014.2.a07

Aryal DR, Gómez-González RR, Hernández-Nuriasmú R, Morales-Ruiz DE, 2018. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor Syst 93(1): 213-227. https://doi.org/10.1007/s10457-018-0310-y

Cajas-Girón YS, Sinclair FL, 2001. Characterization of multistrata silvopastoral systems on seasonally dry pastures in the Caribbean Region of Colombia. Agrofor Syst 53(2): 215-225. https://doi.org/10.1023/A:1013384706085

Cárdenas A, Moliner A, Hontoria C, Ibrahim M, 2019. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor Syst 93(1): 229-239. https://doi.org/10.1007/s10457-018-0234-6

Casasola F, Ibrahim M, Harvey C, Kleinn C, 2001. Caracterización y productividad de sistemas silvopastoriles tradicionales en Moropotente, Estelí Nicaragua. Revista Agroforestería en las Américas 10(30): 17-20.

Cascante A, Quesada M, Lobo JJ, Fuchs EA, 2002. Effects of dry tropical forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conserv Biol 16(1): 137-147. https://doi.org/10.1046/j.1523-1739.2002.00317.x

Chacón-León M, Harvey CA, 2013. Reservas de biomasa de árboles dispersos en potreros y mitigación al cambio climático. Agron Mesoamer 24(1): 17-26. https://doi.org/10.15517/am.v24i1.9637

Chamorro M, Campos R, González A, 2018. Characterization of dispersed trees in pastures in cattle farms department of Rivas, Nicaragua. Revista Forestal del Perú 33(2): 133-146. https://doi.org/10.21704/rfp.v33i2.1226

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biol 20(10): 3177-3190. https://doi.org/10.1111/gcb.12629

Collantes-Chávez-Costa A, Alanis-Rodríguez E, Yam-Uicab O, López-Contreras C, Sarmiento-Muñoz T, Tapia-Muñoz JL, 2019. Composition, structure and diversity of coastal vegetation in the northeastern of Cozumel, Mexico. Bot Sci 97(2): 135-147. https://doi.org/10.17129/botsci.2044

Cordero D, Moreno A, Kosmus M, 2008. Manual para el desarrollo de mecanismos de pago/compensación por servicios ambientales. GTZ/Inwent, Quito, Ecuador. 107 pp.

CORPOCESAR, 2019. Plan de Gestión Ambiental Regional PGAR 2019-2040. p. 569. Corporación Autónoma Regional del Cesar, Colombia.

Dawoe E, Asante W, Acheampong E, Bosu P, 2016. Shade tree diversity and aboveground carbon stocks in Theobroma cacao agroforestry systems: Implications for REDD+ implementation in a West African cacao landscape. Carbon Balance and Management 11(1): 1-13. https://doi.org/10.1186/s13021-016-0061-x

Díaz MF, Enciso K, Triana N, Muriel J, Burkart S, 2019. Pagos por servicios ambientales para sistemas silvopastoriles en Colombia. Centro Internacional de Agricultura Tropical, CIAT, Cali, Colombia. 47 pp.

DNP, 2018. Primeros hallazgos económicos. Departamento de Planeación Nacional, Documento 469. Dirección de Estudios Económicos. pp. 1-35.

Durr PA, 2001. The biology, ecology, and agroforestry potential of the raintree, Samanea saman (Jacq.) Merr. Agrofor Syst 51(3): 223-237. https://doi.org/10.1023/A:1010765022497

Esquivel-Mimenza H, Ibrahim M, Harvey CA, Benjamin T, Sinclair FL, 2011. Dispersed trees in pasturelands of cattle farms in a tropical dry ecosystem. Trop Subtrop Agroecosyst 14(3): 933-941.

FAO, 2018. The future of food and agriculture-Alternative pathways to 2050. Rome. 224 pp.

FAO, ADR, 2019. Plan integral de desarrollo agropecuario y rural con enfoque territorial. Departamento del Cesar. Ministerio de Agricultura y Desarrollo Social. 249 pp.

FAO, UNEP, 2020. The state of the world's forests 2020. In brief. Forests, biodiversity and people. Rome.

Frangi JL, Lugo AE, 1985. Ecosystem dynamics of a subtropical floodplain forest. Ecology Monographs 55(3): 351-369. https://doi.org/10.2307/1942582

García-Flores J, González-Espinosa M, Lindig-Cisneros R, Casas A, 2019. Traditional medicinal knowledge of tropical trees and its value for restoration of tropical forests. Bot Sci 97(3): 336-354. https://doi.org/10.17129/botsci.2122

Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al., 2013. Tackling climate change through livestock-A global assessment of emissions and mitigation opportunities. FAO, Rome. http://www.fao.org/3/a-i3437e.pdf

Giraldo LA, Zapata M, Montoya E, 2006. Estimation of the carbon capture and flow in a silvopastoral system of Acacia mangium associated to Brachiaria dyctioneura in Colombia. Pastos y Forrajes 29(4): 421-435.

Graesser J, Aide TM, Grau HR, Ramankutty N, 2015. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ Res Lett 10(3): 1-11. https://doi.org/10.1088/1748-9326/10/3/034017

Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, et al., 2011. Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manage 261(10): 1664-1674. https://doi.org/10.1016/j.foreco.2010.11.004

Hoosbeek MR, Remme RP, Rusch GM, 2018. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor Syst 92: 263-273.

Houghton R, 2012. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sust 4: 597-603. https://doi.org/10.1016/j.cosust.2012.06.006

Ibrahim M, Chacon M, Cuartas CA, Ponce JF, Vega P, Casola F, Rojas J, 2007. Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforestería en las Américas 45: 27-36.

IDEAM, 2010. Segunda Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. República de Colombia IDEAM. ISBN: 978-958-8067-31-5.

IPCC, 2007. The scientific basis contribution of working group I to the 4th assessment report of the IPCC; Alley R et al. (eds). Intergovernmental Panel on Climate Change, Paris, pp. 18-30.

Jose S, Bardhan S, 2012. Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86: 105-111. https://doi.org/10.1007/s10457-012-9573-x

Jose S, Dollinger J, 2019. Silvopasture: a sustainable livestock production system. Agrofor Syst 93: 1-9. https://doi.org/10.1007/s10457-019-00366-8

Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E, 2015. Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For Ecol Manage 352: 9-20. https://doi.org/10.1016/j.foreco.2015.06.014

Leyva BV, 2003. Estudio morfométrico, análisis radiológico y germinación del árbol del Guácimo (Guazuma ulmifolia Lam). Tesis de licenciatura, Instituto Tecnológico Agropecuario No. 18, Úrsulo Galván Veracruz, México. 48 pp.

MADS, 2015. Plan integral de gestión del cambio climático territorial del Departamento de Cesar 2032. pp: 36-38. Ministerio de Ambiente y Desarrollo Sostenible, Colombia.

Manríquez-Mendoza LY, López-Ortíz S, Pérez-Hernández P, Ortega-Jiménez E, López-Tecpoyotl ZG, Villarruel-Fuentes M, 2011. Agronomic and forage characteristics of Guazuma ulmifolia Lam. Trop Subtrop Agroecosyst 14(2): 453-463.

Martínez-Encino C, Villanueva-López G, Casanova-Lugo F, 2013. Densidad y composición de árboles dispersos en potreros en la Sierra de Tabasco, México. Agrociencia 47(5): 483-496.

MAVDT, 2005. Plan de acción nacional: Lucha contra la desertificación y la sequía en Colombia. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 40 pp.

Montagnini F, Ibrahim M, Murgueitio E, 2013. Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des tropiques 316(2): 3-16. https://doi.org/10.19182/bft2013.316.a20528

Phillips JF, Duque AJ, Yepes AP, Cabrera KR, García MC, Navarrete DA, et al., 2011. Estimación de las reservas actuales (2010) de carbono almacenadas en la biomasa aérea en bosques naturales de Colombia. Instituto de Hidrología, Meteorología, y Estudios Ambientales (IDEAM), Bogotá D.C., Colombia. pp: 1-70.

Pitman NCA, Terborgh JW, Silman MR, Núñez V, Neill DA, Cerón CE, et al., 2001. Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82(8): 2101-2117. https://doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2

Rao I, Peters M, Castro A, Schultze-Kraft R, White D, Fisher M, et al., 2015. LivestockPlus-The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands-Forrajes Tropicales 3(2): 59-82.

Ríos N, Hernán A, Ibrahim M, 2008. Evaluation of hydric recharge in silvopastoral systems in livestock landscapes. Zootecnia Tropical 26(3): 183-186.

Rojas J, Ibrahim M, Andrade HJ, 2009. Carbon sequestration and water use in silvopastoral systems with native timber tree species in the dry tropic of Costa Rica. Cienc Tecnol Agropec 10(2): 214-223.

Rojas-Vargas EP, Silva-Agudelo ED, Guillén-Motta AY, Motta-Delgado PA, Herrera-Valencia W, 2019. Carbon stored in the arboreal stratum of livestock and natural systems of the municipality of Albania, Caquetá, Colombia. Cienc Agric 16(3): 35-46. https://doi.org/10.19053/01228420.v16.n3.2019.9515

Selaya NG, Zuidema PA, Baraloto C, Vos VA, Brienen RJW, Pitman N, et al., 2017. Economically important species dominate aboveground carbon storage in forests of southwestern Amazonia. Ecol Soc 22(2): 1-21. https://doi.org/10.5751/ES-09297-220240

Serrano JR, Andradre HJ, Mora-Delgado J, 2014. Caracterización de la cobertura arbórea en una pastura del trópico seco en Tolima, Colombia. Agron Mesoamer 25(1): 99-110. https://doi.org/10.15517/am.v25i1.14209

Sousa R, Alvarez-Espinosa AC, Rojas N, Melo SF, Romero G, Riveros LC, et al., 2018. Mitigación del cambio climático con un sistema de comercio de emisiones en Colombia: primeros hallazgos económicos. Archiv Econ 469: 1-35.

Ulloa G, 2016. Aspectos ecológicos del bosque seco tropical en el Caribe colombiano. Tropenbos Internacional Colombia & Fondo Patrimonio Natural, Bogotá. ISBN 978-958-9015-00. pp: 1-61.

Villa-Herrera A, Nava-Tablada ME, López-Ortiz S, Vargas-López S, Ortega-Jimenez E, López FG, 2009. Utilización del guácimo (Guazuma ulmifolia Lam.) como fuente de forraje en la ganadería bovina extensiva del trópico mexicano. Trop Subtrop Agroecosyst 10(2): 253-261.

Villanueva C, Tobar D, Ibrahim M, Casasola F, Barrantes J, Arguedas R, 2006. Árboles dispersos en potreros en fincas ganaderas del Pacífico Central de Costa Rica. Agroforest Amer (45): 12-20.

Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ, 2000. Land use, land-use change and forestry. Intergovernmental Panel on Climate Change (IPCC). Cambridge Univ Press, Cambridge, UK.

Zapata-Arango PC, 2010. Efecto del guácimo (Guazuma ulmifolia), carao (Cassia grandis) y roble (Tabebuia rosea) sobre la productividad primaria neta aérea y composición florística de pasturas naturales en Muy Muy y Matiguás, Nicaragua. Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. pp: 1-153

Published
2023-02-14
How to Cite
LOMBO, D. F., BURBANO, E., ARIAS, J. A., & RIVERA, M. (2023). Carbon storage in tree biomass dispersed in pastures in the arid Caribbean region of Colombia. Forest Systems, 32(1), e002. https://doi.org/10.5424/fs/2023321-18932
Section
Research Articles