Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem

  • Jadson B. Moura Evangelical College of Goianésia, Sedmo. Soil Res. Group, Ecol. & Dynamics of Organic Matter, Av. 2020, Covoá, Goianésia, GO https://orcid.org/0000-0002-9739-7942
  • Rodrigo F. Souza Evangelical College of Goianésia, Sedmo. Soil Res. Group, Ecol. & Dynamics of Organic Matter, Av. 2020, Covoá, Goianésia https://orcid.org/0000-0002-9244-7429
  • Wagner G. Vieira-Júnior Evangelical College of Goianésia, Sedmo. Soil Res. Group, Ecol. & Dynamics of Organic Matter, Av. 2020, Covoá, Goianésia, GO https://orcid.org/0000-0001-8843-1953
  • Leidiane S. Lucas Inst. Federal Goiano, Graduate Stud. in Agr. Sci./Agron., Campus Rio Verde, Rio Verde, Goias
  • Jose M. Santos Evangelical College of Goianésia, Sedmo. Soil Res. Group, Ecol. & Dynamics of Organic Matter, Av. 2020, Covoá, Goianésia, GO https://orcid.org/0000-0002-6222-1533
  • Sandro Dutra e Silva Evangelical Univ. of Goiás, Graduate Stud. in Soc., Technol. & Environ. Sci., Av. Universitária, s/n - Cidade Universitária, Anápolis, GO https://orcid.org/0000-0002-0001-5726
  • César Marín 8Univ. Santo Tomás, Centro de Invest. e Innov. para el Cambio Climático (CiiCC), Univ. SantoTomás, Av. Ejército Libertador 146, Santiago https://orcid.org/0000-0002-2529-8929
Keywords: glomalin, conflagration, arbuscular mycorrhizal fungal diversity, mycorrhizal parameters, spore density

Abstract

Aim of the study: To evaluate the effects of a mega-fire on the arbuscular mycorrhizal fungi (AMF) community and parameters in soils under Cerrado vegetation.

Study area: Chapada dos Veadeiros National Park, Goiás, Brazil. This site suffered the biggest fire in its history on October 10, 2017, with an affected area of 66,000 ha.

Material and methods: We analyzed AMF spore density, roots’ mycorrhizal colonization rate, easily extractable glomalin (EEG), as well as the AMF genera present. These parameters were evaluated in burned and unburned areas of five common phytophysiognomies of the region.

Main results: Fire presence immediately affected the mycorrhizal community parameters in Cerrado soils, which tended to increase afterwards. The presence of AMF genera did not differ between burned and unburned areas, with Acaulospora, Claroideglomus, Diversispora, Glomus, Funneliformis, Sclerocystis, and Gigaspora being present. The recovery of AMF community conditions in the Cerrado after fire events could also be observed in the mycorrhizal parameters evaluated, as the values of spore density, roots’ mycorrhizal colonization rate, and EEG were similar in the burned and unburned areas.

Research highlights: AMF diversity, and especially their community parameters, show great recovery after fire events, since they are crucial in processes like nutrient cycling and soil aggregation.

Downloads

Download data is not yet available.

References

Aguilar-Fernández M, Jaramillo VJ, Varela-Fregoso L, Gavito ME, 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza 19: 179-186. https://doi.org/10.1007/s00572-009-0229-2

Bedini S, Avio L, Argese E, Giovannetti M, 2007. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. Agric Ecosyst Environ 120: 463-466. https://doi.org/10.1016/j.agee.2006.09.010

Bellgard SE, Whelan RJ, Muston RM, 1994. The impact of wildfire on vesicular-arbuscular mycorrhizal fungi and their potential to influence the re-establishment of post-fire plant communities. Mycorrhiza 4: 139-146. https://doi.org/10.1007/BF00203532

Bolliger A, Nalla A, Magid J, de Neergaard A, Nalla AD, Bøg-Hansen TC, 2008. Re-examining the glomalin-purity of glomalin-related soil protein fractions through immunochemical, lectin-affinity and soil labelling experiments. Soil Biol Biochem 40: 887-893. https://doi.org/10.1016/j.soilbio.2007.10.019

Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cordeiro MAS, Carneiro MAC, Paulino HB, Junior OJS, 2005. Colonização e densidade de esporos de fungos micorrízicos em dois solos do cerrado sob diferentes sistemas de manejo. Pesqu Agropecu Trop 35: 147-153.

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A et al., 2015, Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970-973. https://doi.org/10.1126/science.aab1161

Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova AA et al., 2021. Temperature and pH define the realized niche space of arbuscular mycorrhizal fungi. New Phytol 231: 763-776. https://doi.org/10.1111/nph.17240

De Moura JB, Cabral JS, 2019. Mycorrhizas in Central Savannahs: Cerrado and Caatinga. In: Mycorrhizal Fungi in South America; Pagano MC, Lugo MA (eds). pp: 193-202. Springer, Cham, Germany. https://doi.org/10.1007/978-3-030-15228-4_10

De Moura JB, de Souza RF, Junior WGV, Lima IR, Brito GHM, Marín C, 2019. Arbuscular mycorrhizal fungi associated with bamboo under Cerrado Brazilian vegetation. J Soil Sci Plant Nutr 19: 954-962. https://doi.org/10.1007/s42729-019-00093-0

De Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI, 2006. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284: 23-32. https://doi.org/10.1007/s11104-006-0025-0

de Santana Leite CCS, dos Santos SMB, Rocha WDJSF, de Barros Silva A, de Mello Baptista GM, 2017. Análise dos incêndios ocorridos no parque nacional da chapada diamantina-bahia em 2008 e 2015 com suporte em índices espectrais de vegetação. Revista Brasileira de Cartografia 69: 1127-1141.

De Souza BR, de Moura JB, Oliveira TC, Ramos MLG, Lopes Filho LC, 2016. Arbuscular mycorrhizal fungi as indicative of soil quality in conservation systems in the region of Vale do São Patrício, Goiás. Int J Curr Res 8: 43307-43311.

Dove NC, Hart SC, 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol 13: 37-65. https://doi.org/10.4996/fireecology.130237746

Ezawa T, Saito K, 2018. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine‐tuning of phosphate metabolism. New Phytol 220: 1116-1121. https://doi.org/10.1111/nph.15187

Fokom R, Adamou S, Teugwa MC, Boyogueno AB, Nana WL, Ngonkeu MEL et al., 2012. Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Till Res 120: 69-75. https://doi.org/10.1016/j.still.2011.11.004

Gadkar V, Rillig MC, 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263: 93-101. https://doi.org/10.1111/j.1574-6968.2006.00412.x

Gerdemann JW, Nicolson TH, 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 46: 235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Giovannetti M, Mosse B, 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84: 489-500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Holátko J, Brtnický M, Kučerík J, Kotianová M, Elbl J, Kintl A, et al., 2021. Glomalin-truths, myths, and the future of this elusive soil glycoprotein. Soil Biol Biochem 153: 108-116. https://doi.org/10.1016/j.soilbio.2020.108116

Hunke P, Mueller EN, Schröder B, Zeilhofer P, 2015. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8: 1154-1180. https://doi.org/10.1002/eco.1573

Kauffman JB, Cummings DL, Ward DE, 1994. Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J Ecol 82: 519-531. https://doi.org/10.2307/2261261

Klink CA, Sato MN, Cordeiro GG, Ramos MIM, 2020. The role of vegetation on the dynamics of water and fire in the Cerrado ecosystems: implications for management and conservation. Plants 9: 1803. https://doi.org/10.3390/plants9121803

Longo S, Nouhra E, Goto BT, Berbara RL, Urcelay C, 2014. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecol Manag 315: 86-94. https://doi.org/10.1016/j.foreco.2013.12.027

Marín C, Kohout P, 2021. Response of soil fungal ecological guilds to global changes. New Phytol 229: 656-658. https://doi.org/10.1111/nph.17054

Marín C, Godoy R, Valenzuela E, Schloter M, Wubet T, Boy J, Gschwendtner S, 2017. Functional land-use change effects on soil fungal communities on Chilean temperate rainforests. J Soil Sci Plant Nutr 17: 985-1002. https://doi.org/10.4067/S0718-95162017000400011

Martínez O, Valenzuela E, Godoy R, 2005. Hongos aislados desde suelos de bosques de Araucaria-Nothofagus después de un incendio en el Parque Nacional Tolhuaca. Bol Micol 20: 35-39. https://doi.org/10.22370/bolmicol.2005.20.0.268

Martínez O, Cabeza R, Paulino L, Godoy R, Valenzuela E, 2018. Evaluation of soil enzymes activities in an Araucaria-Nothofagus forest after a wildfire. Agro Sur 46: 17-26.

Mataix-Solera J, Guerrero C, García-Orenes F, Bárcenas GM, Torres MP, Barcenas M, 2009. Forest fire effects on soil microbiology. In: Fire effects on soils and restoration strategies; Cerdá A, Robichaud PR (eds). pp: 133-175. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9781439843338-c5

Miranda HS, Sato MN, Neto WN, Aires FS, 2009. Fires in the cerrado, the Brazilian savanna. In: Tropical fire ecology; Cochrane MA (ed). pp: 427-450. Springer, Heidelberg, Germany. https://doi.org/10.1007/978-3-540-77381-8_15

Moya D, Madrigal J, Fontúrbel T, Marino E, Hernando C, Guijarro M, et al., 2019. Fire severity assessments in both the laboratory and the field. In: Fire effects on soil properties; Pereira P et al. (eds). pp: 241-266. CSIRO, Clayton South, Australia.

Nichols KA, Wright SF, 2006. Carbon and nitrogen in operationally defined soil organic matter pools. Biol Fert Soils 43: 215-220. https://doi.org/10.1007/s00374-006-0097-2

Oehl F, Sieverding E, Palenzuela J, Ineichen K, da Silva GA, 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2: 191-199. https://doi.org/10.5598/imafungus.2011.02.02.10

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al., 2020. Vegan: Community Ecology Package. R package vers 2.5-7. https://CRAN.R-project.org/package=vegan

Paulino L, Godoy R, Boeckx P, 2009. Ecosystem responses of Andean Araucaria-Nothofagus communities after a wildfire. In: Ecological advances on Chilean temperate rainforests; Oyarzún C, et al. (eds). pp: 117-132. Academia Press, Ghent, Belgium.

Phillips JM, Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55: 158-161. https://doi.org/10.1016/S0007-1536(70)80110-3

Rashid A, Ahmed T, Ayub N, Khan AG, 1997. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 7: 217-220. https://doi.org/10.1007/s005720050183

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ratter JA, Bridgewater S, Ribeiro F, 2006. Biodiversity patterns of the woody vegetation of the Brazilian Cerrado. In: Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation; Pennington RT et al. (eds). pp: 31-66. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9781420004496-2

Rillig MC, 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84: 355-363. https://doi.org/10.4141/S04-003

Rivas Y, Canseco MI, Knicker H, Etcheverría P, Godoy R, Matus F, et al., 2016. Variación en el contenido de glomalina relacionada a las proteínas del suelo, después de un incendio forestal en un Andisol en bosques de Araucaria araucana del centro-sur de Chile. Bosque 37: 409-417. https://doi.org/10.4067/S0717-92002016000200019

Rodriguez-Ramos JC, Cale JA, Cahill JF Jr, Simard SW, Karst J, Erbilgin N, 2021. Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytol 229: 1105-1117. https://doi.org/10.1111/nph.16749

Santos GC, 2016. Comunidade de fungos micorrízicos arbusculares em campos rupestres quartzíticos e ferruginosos da Serra do Espinhaço. Master Thesis, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brazil.

Sharifi Z, Azadi N, Rahimi S, Certini G, 2018. The response of glomalin-related soil proteins to fire or tillage. Geoderma 329: 65-72. https://doi.org/10.1016/j.geoderma.2018.05.008

Simon MF, Pennington T, 2012. Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int J Plant Sci 173: 711-723. https://doi.org/10.1086/665973

Simon MF, Grether R, Queiroz LPD, Skema C, Pennington RT, Hughes CE, 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106: 20359-20364. https://doi.org/10.1073/pnas.0903410106

Steidinger BS, Bhatnagar JM, Vilgalys R, Taylor JW, Qin C, Zhu K, et al., 2020. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J Biogeogr 47: 772-782. https://doi.org/10.1111/jbi.13802

Van der Heyde M, Ohsowski B, Abbott LK, Hart M, 2017. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27: 431-440. https://doi.org/10.1007/s00572-016-0759-3

Van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, et al., 2017. Global fire emissions estimates during 1997-2016. Earth Syst Sci Data 9: 697-720. https://doi.org/10.5194/essd-9-697-2017

Veenendaal EM, Torello‐Raventos M, Miranda HS, Sato NM, Oliveras I, van Langevelde F, et al., 2018. On the relationship between fire regime and vegetation structure in the tropics. New Phytol 218: 153-166. https://doi.org/10.1111/nph.14940

Walter BMT, 2006. Fitofisionomias do bioma Cerrado: síntese terminológica e relações florísticas. Doctoral Thesis, Universidade de Brasília, Brazil.

Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC, 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long‐term field experiments. Ecol Lett 12: 452-461. https://doi.org/10.1111/j.1461-0248.2009.01303.x

Wright SF, Upadhyaya A, 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161: 575-586. https://doi.org/10.1097/00010694-199609000-00003

Wright SF, Upadhyaya A, 1999. Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8: 283-285. https://doi.org/10.1007/s005720050247

Xiang X, Gibbons SM, Yang J, Kong J, Sun R, Chu H, 2015. Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant Soil 397: 347-356. https://doi.org/10.1007/s11104-015-2633-z

Published
2022-01-27
How to Cite
Moura, J. B., Souza, R. F., Vieira-Júnior, W. G., Lucas, L. S., Santos, J. M., Dutra e Silva, S., & Marín, C. (2022). Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem . Forest Systems, 31(1), e001. https://doi.org/10.5424/fs/2022311-18557
Section
Special Issue. Forests: Reservoirs of Global Mycocultural Heritage and Mycologic