Formamide deionized accelerates the somatic embryogenesis of Cunninghamia lanceolata

  • Shichan He Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Zhaodong Hao Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Dandan Wang Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Yulin Guo Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Hua Wu Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Asif Ali Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Renhua Zheng Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou, 350012
  • Xuenyan Zheng National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang 353211, China
  • Jinhui Chen Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037
  • Jisen Shi Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037

Abstract

Aim of the study: To improve the efficiency of the somatic embryogenesis (SE) in Cunninghamia lanceolata.

Area of the study: The study was conducted at Nanjing Forestry University (Nanjing, China).

Material and methods: Immature cones of C. lanceolata, genotype 01A1 which was planted in Yangkou State-owned Forest Farm (Fujian, China), were used to induced callus. These calli were used to induce SE, concentration gradients of 0 g/L, 0.01134 g/L, 0.1134 g/L, 1.1134 g/L and 11.34 g/L of FD was added, to explore the optimal concentration for promoting SE of C. lanceolata.

Main results: Low concentration of FD promoted the maturation of somatic embryos, while high concentration of FD lead to browning of embryogenic callus. The seedling rate and rooting number of seedlings induced by different concentrations of FD were significantly different.

Research highlights: This study may aid in the rapid maturation of C. lanceolata somatic embryos and is useful for accelerated C. lanceolata breeding.

Keywords: C. lanceolata; Formamide Deionized; Somatic embryogenesis; Seedling rate.

Abbreviations used: FD (Formamide Deionized), FD0 (the concentration of 0 g/L FD), FD0.01134 (the concentration of 0.01134 g/L FD), FD0.1134 (the concentration of 0.1134 g/L FD), FD1.134 (the concentration of 1.134 g/L FD), FD11.34 (the concentration of 11.34 g/L FD).

Downloads

Download data is not yet available.

References

Aleith F, Richter G, 1991. Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 183 (1): 17-24. https://doi.org/10.1007/BF00197562

Carlsson J, Svennerstam H, Moritz T, Egertsdotter U, Ganeteg U, 2017. Nitrogen uptake and assimilation in proliferating embryogenic cultures of Norway spruce-Investigating the specific role of glutamine. PloS One 12 (e01817858). https://doi.org/10.1371/journal.pone.0181785

Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P, 2002. Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell, Tissue Organ Cult 70 (3): 251-257. https://doi.org/10.1023/A:1016508031151

Chen GS, Yang ZJ, Gao R, Xie JS, Guo JF, Huang ZQ, Yang YS, 2013. Carbon storage in a chronosequence of Chinese fir plantations in southern China. For Ecol Manag 300 (SI): 68-76. https://doi.org/10.1016/j.foreco.2012.07.046

Chomczynski P, 1992. Solubilization in formamide protects RNA from degradation. Nucleic Acids Res 20 (14): 3791-2. https://doi.org/10.1093/nar/20.14.3791

Duan HJ, Cao S, Zheng HQ, Hu DH, Lin J, Cui BB, Lin HZ, Hu RY, Wu B, Sun YH, et al., 2017. Genetic Characterization of Chinese fir from Six Provinces in Southern China and Construction of a Core Collection. Sci Rep 7 (13814). https://doi.org/10.1038/s41598-017-13219-0

Filonova LH, Bozhkov PV, von Arnold S, 2000. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51 (343): 249-64. https://doi.org/10.1093/jexbot/51.343.249

Gao Y, Bian LM, Shi JS, Xu J, Xi ML, Wang GF, 2013. Expression of a conifer COBRA-like gene ClCOBL1 from Chinese fir (Cunninghamia lanceolata) alters the leaf architecture in tobacco. Plant Physiol Biochem 70: 483-491. https://doi.org/10.1016/j.plaphy.2013.06.013

Gupta PK, Durzan DJ, 1985. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4 (4): 177-9. https://doi.org/10.1007/BF00269282

Hakman I, Fowke LC, Von Arnold S, Eriksson T, 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Sci 38 (1): 53-59. https://doi.org/10.1016/0168-9452(85)90079-2

Hakman I, Von Arnold S, 1985. Plantlet Regeneration through Somatic Embryogenesis in Picea abies (Norway Spruce). J Plant Physiol 121 (2): 149-158. https://doi.org/10.1016/S0176-1617(85)80040-7

Han Y, Zhao YC, Zhang J, Jiang CT, Sun J, Ou Y, Yin J, Ye J, 2010. The discussion of domestic deionized formamide in forensic DNA detection. Forensic Sci Technol (02): 59-61.

Hu RY, Sun YH, Wu B, Duan HJ, Zheng HQ, Hu DH, Lin HZ, Tong ZK, Xu JL, Li Y, 2017. Somatic Embryogenesis of Immature Cunninghamia lanceolata (Lamb.) Hook Zygotic Embryos. Sci Rep 7 (56). https://doi.org/10.1038/s41598-017-00156-1

Jimenez VM, 2005. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47 (2-3): 91-110. https://doi.org/10.1007/s10725-005-3478-x

John C, Nanfei X, Gerald SP, Vincent TC, Barbara J, 1999. Natural and somatic embryo development in loblolly pine. Appl Biochem and Biotechnol 77 (1-3): 5-17. https://doi.org/10.1007/978-1-4612-1604-9_2

Li MH, Gary AR, 1999. Eight hundred years of clonal forestry in China: I. traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New For (Dordr) 18 (2).

Li YQ, Deng XW, Huang ZH, Xiang WH, Yan WD, Lei PF, Zhou XL, Peng CH, 2015. Development and Evaluation of Models for the Relationship between Tree Height and Diameter at Breast Height for Chinese-Fir Plantations in Subtropical China. PloS One 10 (e01251184). https://doi.org/10.1371/journal.pone.0125118

Linossier L, Veisseire P, Cailloux F, Coudret A, 1997. Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124 (2): 183-191. https://doi.org/10.1016/S0168-9452(97)04597-4

Lu YH, Coops NC, Wang TL, Wang GY, 2015. A Process-Based Approach to Estimate Chinese Fir (Cunninghamia lanceolata) Distribution and Productivity in Southern China under Climate Change. Forests 6 (2): 360-379. https://doi.org/10.3390/f6020360

Mei GY, Sun YJ, Saeed S, 2017. Models for Predicting the Biomass of Cunninghamia lanceolata Trees and Stands in Southeastern China. PloS One 12 (e01697471). https://doi.org/10.1371/journal.pone.0169747

Mohd Din ARJ, Iliyas Ahmad F, Wagiran A, Abd Samad A, Rahmat Z, Sarmidi MR, 2016. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi J Biol Sci 23 (1, Supplement): S69-S77. https://doi.org/10.1016/j.sjbs.2015.10.022

Olarieta AC, Moncaleán P, Montalbán IA, 2020. Pinus canariensis plant regeneration through somatic embryogenesis. For Sys 29 (1): 61-66. https://doi.org/10.5424/fs/2020291-16136

Sarkar G, Kapelner S, Sommer SS, 1990. Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res 18 (24): 7465-7465. https://doi.org/10.1093/nar/18.24.7465

Shi JS, Zhen Y, Zheng RH, 2010. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. J Exp Bot 61 (9): 2367-2381. https://doi.org/10.1093/jxb/erq066

Solanki M, Sinha A, Shukla LI, 2019. Optimization of in vitro culture media for improvement in yield of Navara ancient Indian medicinal rice. 3 Biotech 9 (2707). https://doi.org/10.1007/s13205-019-1797-2

Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu WB, Sederoff RR, 2003. Transcript profiles of stress-related genes in developing white spruce (Picea glauca) somatic embryos cultured with polyethylene glycol. Plant Sci 165 (4): 719-729. https://doi.org/10.1016/S0168-9452(03)00228-0

Tang XL, Perez-Cruzado C, Fehrmann L, Gabriel Alvarez-Gonzalez J, Lu YC, Kleinn C, 2016. Development of a Compatible Taper Function and Stand-Level Merchantable Volume Model for Chinese Fir Plantations. PloS One 11 (e01476101). https://doi.org/10.1371/journal.pone.0147610

Vales T, Feng XR, Ge L, Xu NF, Cairney J, Pullman GS, Peter GF, 2007. Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26 (2): 133-143. https://doi.org/10.1007/s00299-006-0221-7

von Arnold S, Bozhkov P, Clapham D, Dyachok J, Filonova L, Hogberg KA, Ingouff M, Wiweger M, 2005. Propagation of Norway spruce via somatic embryogenesis. Plant Cell, Tissue Organ Cult 81 (3): 323-329. https://doi.org/10.1007/s11240-004-6662-1

Wang DD, Guo YL, Long XF, Pan Y, Yang DJ, Li R, Lu Y, Chen Y, Shi JS, Chen JH, 2020. Exogenous Spermidine Promotes Somatic Embryogenesis of Cunninghamia lanceolata by Altering the Endogenous Phytohormone Content. Phyton-Int J Exp Bot 89 (1): 27-34. https://doi.org/10.32604/phyton.2020.08971

Wen YF, 2011. The research of initiation and subculture of embryogenesis tissue of Cunninghamia lanceolata (Lamb.) Hook based on the immature zygotic embryo, Fujian Agriculture and Forestry University: 74.

Zhang Y, Wei ZM, Xi ML, Shi JS, 2006. Efficient plant regeneration in vitro in Pinus massoniana L. J Mol Cell Biol 39 (03): 271-276.

Zhao MF, Xiang WH, Peng CH, Tian DL, 2009. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. For Ecol Manag 257 (6): 1520-1531. https://doi.org/10.1016/j.foreco.2008.12.025

Zheng HQ, Duan HJ, Hu DH, Li Y, Hao YB, 2015a. Genotypic variation of Cunninghamia lanceolata revealed by phenotypic traits and SRAP markers. Dendrobiology 74: 85-94. https://doi.org/10.12657/denbio.074.009

Zheng HQ, Hu DH, Wang RH, Wei RP, Yan S, 2015b. Assessing 62 Chinese Fir (Cunninghamia lanceolata) Breeding Parents in a 12-Year Grafted Clone Test. Forests 6 (10): 3799-3808. https://doi.org/10.3390/f6103799

Zhou XH, Zheng RH, Liu GX, Xu Y, Zhou YW, Laux T, Zhen Y, Harding SA, Shi JS, Chen JH, 2017. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. Front Plant Sci 8 (2054). https://doi.org/10.3389/fpls.2017.02054

Zhu ML, Wang J, Yu Y, Liu SJ, Wei ZM, 2007. Efficient organogenesis and plantlet regeneration in the timber species Cunninghamia lanceolata (Lamb.) Hook. In Vitro Cell Dev Biol plant 43 (5): 449-455. https://doi.org/10.1007/s11627-007-9092-z

Published
2021-11-16
How to Cite
He, S., Hao, Z., Wang, D., Guo, Y., Wu, H., Ali, A., Zheng, R., Zheng, X., Chen, J., & Shi, J. (2021). Formamide deionized accelerates the somatic embryogenesis of Cunninghamia lanceolata. Forest Systems, 30(3), e016. https://doi.org/10.5424/fs/2021303-18068
Section
Research Articles