Growth differential related to wood structure and function of Eucalyptus spp. clones adapted to seasonal drought stress

  • Deborah Rodrigues de Souza Santos Department of Forest Sciences, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil http://orcid.org/0000-0002-4526-8452
  • Rafael Fernandes-dos Santos Department of Forest Engineering, Federal University of Goiás, Goiânia, Goiás
  • Júlia Lôbo-Ribeiro Anciotti Department of Forest Sciences, University of São Paulo, Piracicaba, São Paulo
  • Carlos de-Melo-e Silva-Neto Department of Forest Engineering, Federal University of Goiás, Goiânia, Goiás
  • Alinne Santos-da Silva Department of Forest Sciences, University of São Paulo, Piracicaba, São Paulo
  • Evandro Novaes Department of Biology, Federal University of Lavras, Lavras, Minas Gerais
  • Carlos-Roberto Sette-Júnior Department of Forest Engineering, Federal University of Goiás, Goiânia, Goiás
  • Mario Tomazello-Filho Department of Forest Sciences, University of São Paulo, Piracicaba, São Paulo
  • Matheus Peres Chagas Department of Forest Engineering, Federal University of Goiás, Goiânia, Goiás

Abstract

Aim of the study: To evaluate the growth performance, wood density and anatomical features of four drought-tolerant Eucalyptus spp. clones, at 4 years, and to examine the relationships between these characteristics and some functional parameters.

Area of study: The analyzed trees were from a clonal test installed in a region characterized by seasonal drought stress in central-western Brazil.

Methods: Trees were felled, followed by obtaining dendrometric parameters and wood disk sampling to determine wood bulk density by x-ray densitometry, and morphometric parameters of fibers and vessels in order to evaluate the xylem hydraulic architecture. Lumen fraction (F), vessel composition (S) and hydraulic conductivity (Ks) were estimated.

Results: Clone D (E. urophylla x E grandis) presented the highest growth rates, which was related to anatomical characteristics such as low relative frequency of wide vessels. High theoretical Ks does not necessarily imply higher growth rates and were related to lower wood densities. It is possible to infer that the better xylem adjustability of Eucalyptus trees in response to drought stress conditions is associated with increased vessel composition to the detriment of higher hydraulic conductivity.

Research highlights: Vessel composition showed a greater variation among Eucalyptus genotypes and was positively associated with growth performance.

Keywords: wood anatomy; dendrometry; X-ray densitometry; water stress; hydraulic conductivity.

Abbreviations used: F: lumen fraction; S: vessel composition; Ks: theoretical xylem-specific hydraulic conductivity.

Downloads

Download data is not yet available.

References

Almeida AC, Siggins A, Batista TR, Beadle C, Fonseca S, Loos R, 2010. Mapping the effect of spatial and temporal variation in climate and soils on Eucalyptus plantation production with 3-PG, a process-based growth model. For Ecol Manage 259(9): 1730-40. https://doi.org/10.1016/j.foreco.2009.10.008

Andrade Bueno IG, Picoli EA de T, Isaias RM dos S, Barbosa Lopes-Mattos KL, Cruz CD, Naomi Kuki K, Valverde Zauza EA, 2020. Wood anatomy of field grown Eucalypt genotypes exhibiting differential dieback and water deficit tolerance. Curr. Plant Biol 22: 2214-6628. https://doi.org/10.1016/j.cpb.2020.100136

Apiolaza LA, Raymond CA, Yeo BJ, 2005. Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genet 54(4-5): 160-66. https://doi.org/10.1515/sg-2005-0024

Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y, 2011. Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS One 6(12). https://doi.org/10.1371/journal.pone.0028252

Baas P, 1986. Ecological patterns in xylem anatomy. Econ Plant Form Funct ed. T.J.G, 327-349.

Bamber RK, 1976. Heartwood, its function and formation. Wood Sci Technol 10(1): 1-8. https://doi.org/10.1007/BF00376379

Barotto AJ, Monteoliva S, Gyenge J, Martínez-Meier A, Moreno K, Tesón N, Fernández ME, 2017. Wood density and anatomy of three Eucalyptus species: Implications for hydraulic conductivity. For Syst 26(1). https://doi.org/10.5424/fs/2017261-10446

Boland D, Broker MH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleining DA, Mcdonald MW, Turner JD, Napoli A, 2006. Forest trees of Australia, CSIRO. ed. Melbourne. https://doi.org/10.1071/9780643069701

Bourne AE, Creek D, Peters JMR, Ellsworth DS, Choat B, 2017. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Ann Bot 120(1): 123-133. https://doi.org/10.1093/aob/mcx020

Brodribb TJ, Feild TS, 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23(12): 1381-1388. https://doi.org/10.1046/j.1365-3040.2000.00647.x

Brodribb TJ, Holbrook NM, Gutiérrez MV, 2002. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25(11): 1435-1444. https://doi.org/10.1046/j.1365-3040.2002.00919.x

Campoe OC, Munhoz JSB, Alvares CA, Carneiro RL, de Mattos EM, Ferez APC, Stape JL, 2016. Meteorological seasonality affecting individual tree growth in forest plantations in Brazil. For Ecol Manage 380: 149-160. https://doi.org/10.1016/j.foreco.2016.08.048

Cardoso MRD, Marcuzzo FFN, Barros JR, 2014. Climatic classification of Köppen-Geiger for the State of Goias and Federal District. Acta Geográfica 8(16): 40-55.

Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot 103(4): 551-560. https://doi.org/10.1093/aob/mcn125

Cherelli SG, Sartori MMP, Próspero AG, Ballarin AW, 2018. Heartwood and sapwood in Eucalyptus trees: non-conventional approach to wood quality. An Acad Bras Cienc 90(1): 425-438. https://doi.org/10.1590/0001-3765201820160195

Clarke B, Mcleod I, Vercoe T, 2009. Trees for farm forestry: 22 promising species.

Crous CJ, Greyling I, Wingfield MJ, 2018. Dissimilar stem and leaf hydraulic traits suggest varying drought tolerance among co-occurring Eucalyptus grandis × E. urophylla clones. South For 80(2): 175-184. https://doi.org/10.2989/20702620.2017.1315546

da Silva PHM, Marco M, Alvares CA, Lee D, De Moraes MLT, De Paula RC, 2019. Selection of Eucalyptus grandis families across contrasting environmental conditions. Crop Breed Appl Biotechnol 19(1): 47-54. https://doi.org/10.1590/1984-70332019v19n1a07

de Lima BM, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D, 2019. Quantitative genetic parameters for growth and wood properties in Eucalyptus urograndis hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS One 14(6): 1-24. https://doi.org/10.1371/journal.pone.0218747

Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion JM, Nourrisier-Mountou S, Polidori J, Bouvet JM, 2013. Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet. Genomes 9: 927-942. https://doi.org/10.1007/s11295-013-0606-z

Fernandes J da S, Conceição Júnior V, Barreto-Garcia PAB, 2018. Field performance of Eucalyptus hybrids at Planalto da Conquista, Bahia, Brazil. Floresta e Ambient. 25(2). https://doi.org/10.1590/2179-8087.059416

Flores T, Alvares CA, Souza V, Stape JL, 2016. Eucalyptus in Brazil: Climatic zoning and identification guide.

Gadgil PD, Wardlaw TJ, Ferreira FA, Sharma JK, Dick MA, Wingfield MJ, Crous PW, 2000. Management of disease in Eucalypt plantations, in: Diseases and Pathogens of Eucalypts. pp. 519-527.

Gonçalves JLM, Alvares CA, Rocha JHT, Brandani CB, Hakamada R, 2017. Eucalypt plantation management in regions with water stress. South For 79(3): 169-183. https://doi.org/10.2989/20702620.2016.1255415

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA, 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4): 457-461. https://doi.org/10.1007/s004420100628

IAWA, 1989. List of Microscopic Features for Hardwood Identification. Bull. n. ser. 10(3): 332.

IBÁ, 2019. Report 2019. IBÁ, São Paulo, Brazil.

Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD, 2005. Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139(1): 546-556. https://doi.org/10.1104/pp.104.058404

Knapic S, Pirralho M, Louzada JL, Pereira H, 2014. Early assessment of density features for 19 Eucalyptus species using X-ray microdensitometry in a perspective of potential biomass production. Wood Sci Technol 48(1): 37-49. https://doi.org/10.1007/s00226-013-0579-y

Kube PD, Raymond CA, Banham PW, 2001. Genetic parameters of celullose content and fibre properties in Eucalyptus nitens. For Genet 8(4): 285-294.

Lagergren F, Jönsson AM, 2017. Ecosystem model analysis of multi-use forestry in a changing climate. Ecosyst Serv 26: 209-224. https://doi.org/10.1016/j.ecoser.2017.06.007

Levene H, 1960. Robust testes for equality of variances. In Contributions to Probability and Statistics. Stanford Univ. Press.

Lundqvist SO, Grahn T, Olsson L, Seifert T, 2017. Comparison of wood, fibre and vessel properties of drought-tolerant Eucalypts in South Africa. South For 79(3): 215-225. https://doi.org/10.2989/20702620.2016.1254910

Martins GS, Freitas NC, Máximo WPF, Paiva LV, 2018. Gene expression in two contrasting hybrid clones of Eucalyptus camaldulensis x Eucalyptus urophylla grown under water deficit conditions. J Plant Physiol 229: 122-131. https://doi.org/10.1016/j.jplph.2018.07.007

Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM, 2010. The blind men and the elephant: The impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164(2): 287-296. https://doi.org/10.1007/s00442-010-1734-x

Oliveira BR, Latorraca JVF, Tomazello Filho M, Palermo GPM, Carvalho AM, Pastro MS, 2012. X-ray microdensitometry applied to determination of wood density variation of Eucalyptus grandis W. Hill trees. Sci For 40(93): 103-112.

Paludzyszyn Filho E, Santos PET dos, 2011. Embrapa Florestas Eucalyptus breeding program: results and perspectives, 1st ed. Embrapa Florestas, Colombo- PR.

Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA, 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19(3): 240-248. https://doi.org/10.1111/ele.12559

Pirralho M, Flores D, Sousa VB, Quilhó T, Knapic S, Pereira H, 2014. Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Ind Crops Prod 54: 327-334. https://doi.org/10.1016/j.indcrop.2014.01.040

Polge H, 1963. Une nouvelle méthode de détermination de la texture du bois: lʼanalyse densitométrique de clichés radiographiques. Ann Sci Forest 20: 533-580.

Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U, 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185(2): 481-492. https://doi.org/10.1111/j.1469-8137.2009.03092.x

Rao RV, Shashikala S, Sreevani P, Kothiyal V, Sarma CR, Lal P, 2002. Within tree variation in anatomical properties of some clones of Eucalyptus tereticornis Sm. Wood Sci Technol 36(3): 271-285. https://doi.org/10.1007/s00226-002-0139-3

Saadaoui E, Ben Yahia K, Dhahri S, Ben Jamaa ML, Khouja ML, 2017. An overview of adaptative responses to drought stress in Eucalyptus spp. For Stud 67(1): 86-96. https://doi.org/10.1515/fsmu-2017-0014

Sette CR, de Oliveira IR, Filho MT, Yamaji FM, Laclau JP, 2012. Effect of age and sampling position on density and anatomical characteristics of Eucalyptus grandis wood. Rev Arvore 36(6): 1183-1190. https://doi.org/10.1590/S0100-67622012000600019

Shapiro SS, Wilk MB, 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3): 591-611. https://doi.org/10.1093/biomet/52.3-4.591

Sharma SK, Shukla SR, Shashikala S, Poornima VS, 2015. Axial variations in anatomical properties and basic density of Eucalypt urograndis hybrid (Eucalyptus grandis × E. urophylla) clones. J For Res 26(3): 739-744. https://doi.org/10.1007/s11676-015-0080-6

Sperry JS, Love DM, 2015. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol 207(1): 14-27. https://doi.org/10.1111/nph.13354

Sperry JS, Meinzer FC, McCulloh KA, 2008. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ 31: 632-645. https://doi.org/10.1111/j.1365-3040.2007.01765.x

Stape JLE, Alvares C, Siqueira L, Benatti TR, Hall KB, Zauza EV, Bentivenha SR, Aguinaldo JSL, 2018. Dealing with genotype x environmental interactions in Eucalyptus forest companies, in: IUFRO (Ed.), Eucalyptus 2018: Managing Eucalyptus Plantations under Global Changes. Montpellier.

Sturion JA, 2008. Genetic control of basic density of Eucalyptus viminalis Labill wood. Bol Pesqui. e Desenvolv. 37: 32.

Tomazello M, Brazolin S, Chagas MP, Oliveira JTS, Ballarin AW, Benjamin CA, 2008. Application of x-ray technique in nondestructive evaluation of Eucalypt wood. Maderas Cienc Tecnol 10(2): 139-149. https://doi.org/10.4067/S0718-221X2008000200006

Tonini H, Wink C, Silva AG da MF e, 2019. Sampling Alternatives for Eucalyptus Trees in Integrated Crop-Livestock-Forest System. Floresta e Ambient. 26(3). https://doi.org/10.1590/2179-8087.089317

Tyree MT, Ewers FW, 1991. The hydraulic architecture of trees and other woody plants. New Phytol. 119(3): 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

Tyree MT, Zimmermann MH, 2002. Xylem structure and the ascent of sap. Springer. https://doi.org/10.1007/978-3-662-04931-0

Villar-Salvador P, Castro-Díez P, Pérez-Rontomé C, Montserrat-Martí G, 1997. Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees 12(2): 90-96. https://doi.org/10.1007/PL00009701

White D, Beadle C, Worledge D, Honeysett J, Cherry M, 1998. The influence of drought on the relationship between leaf and conducting sapwood area in Eucalyptus globulus and Eucalyptus nitens. Trees - Struct Funct 12(7): 406-414. https://doi.org/10.1007/PL00009724

Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA, 2010. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97(2): 207-215. https://doi.org/10.3732/ajb.0900178

Ziemińska K, Butler DW, Gleason SM, Wright IJ, Westoby M, 2013. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5: 1-14. https://doi.org/10.1093/aobpla/plt046

Published
2021-11-16
How to Cite
Santos, D. R. de S., Santos, R. F.- dos, Anciotti, J. L.-R., Silva-Neto, C. de-M.- e, Silva, A. S.- da, Novaes, E., Sette-Júnior, C.-R., Tomazello-Filho, M., & Chagas, M. P. (2021). Growth differential related to wood structure and function of Eucalyptus spp. clones adapted to seasonal drought stress. Forest Systems, 30(3), e014. https://doi.org/10.5424/fs/2021303-17908
Section
Research Articles