Improving the accuracy of wood moisture content estimation in four European softwoods from Spain

  • Maria Conde Garcia INIA-CIFOR, Madrid.
  • Marta Conde Garcia Universidad de Córdoba, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Córdoba.
  • Juan I. Fernández-Golfín INIA-CIFOR, Madrid http://orcid.org/0000-0002-3597-7618

Abstract

Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.

Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.

Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.

Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.

Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.

Keywords: Resistance-type moisture meter; species correction.

Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.

Downloads

Download data is not yet available.

Author Biographies

Maria Conde Garcia, INIA-CIFOR, Madrid.
Centro de Investigacion Forestal (CIFOR-INIA) Departamento de Productos Forestales Proyectos sobre Fisica de la Madera (Secado y propiedades electricas) y Mecanica de la madera (Caracterizacion estructural y evaluacion no destructiva de la calidad).
Marta Conde Garcia, Universidad de Córdoba, Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Córdoba.
Forest industriaes professor
Juan I. Fernández-Golfín, INIA-CIFOR, Madrid
Centro de Investigacion Forestal (CIFOR-INIA) Departamento de Productos Forestales Proyectos sobre Fisica de la Madera (Secado y propiedades electricas) y Mecanica de la madera (Caracterizacion estructural y evaluacion no destructiva de la calidad).

References

AS/NZS 1080.1:1988 Timber - Methods of test - Method 1: Moisture content (joint Australia-New Zealand standard). Standards New Zealand. Ministry of Business, Innovation and Employment.

Brischke C, Rapp AO, Bayerbach R, 2007. Decay influencing factors: a basis for service life prediction of wood and wood-based products. Wood Mat Sci Eng 1:91-107. https://doi.org/10.1080/17480270601019658

Brischke C, Otto Rapp A, Bayerbach R, 2008. Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Building and Environment 43: 1566-1574. https://doi.org/10.1016/j.buildenv.2007.10.002

Brischke C, Lampen SC, 2014. Resistance based moisture content measurements on native, modified and preservative treated wood. Eur. J. Wood Prod. (2014) 72:289-292. https://doi.org/10.1007/s00107-013-0775-3

Dietsch P, Franke S, Franke B, Gamper A, Winter S, 2015a. Methods to determine wood moisture content and their applicability in monitoring concepts. J Civil Struct. Health Monit. 5: 115-127. https://doi.org/10.1007/s13349-014-0082-7

Dietsch P, Gamper A, Merk M, Winter S, 2015b. Monitoring building climate and timber moisture gradient in large-span timber structures. J Civil Struct. Health Monit. 5: 153-165. https://doi.org/10.1007/s13349-014-0083-6

Dyken T, Kepp H, 2010. Monitoring the Moisture Content of Timber Bridges. International Conference on Timber Bridges (ITCB 2010). Lillehammer, Norway 12-15 September 2010.

EN 13183-1:2002 Moisture content of a piece of sawn timber - Part 1: Determination by oven dry method. European Committee for Standardization (CEN).

EN 13183-2:2002 Moisture content of a piece of sawn timber. Part 2: Estimation by electrical resistance method. European Committee for Standardization (CEN).

EN 14081-1:2016+A1:2020 Timber structures - Strength graded structural timber with rectangular cross section - Part 1: General requirements. European Committee for Standardization (CEN).

Engelund Thybring E, Kymälänen M, Rautkari L, 2018. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated. Wood Sci Technol 52:297-329. https://doi.org/10.1007/s00226-017-0977-7

Fernandez-Golfin JI, Conde Garcia M, Conde Garcia M, Fernandez-Golfin JJ, Calvo Haro R, Baonza Merino MV, de Palacios P, 2012. Curves for the estimation of the moisture content of ten hardwoods by means of electrical resistance measurements. Forest Systems 21(1):121-127. https://doi.org/10.5424/fs/2112211-11429

Fernández-Golfín JI, Conde García M, Fernández-Golfín JJ, Conde García M, Hermoso E, Cabrero JC., 2014. Effect of temperature of thermotreatment on electrical conductivity of radiata pine timber. Maderas Ciencia y Tecnología 16 (1): 25-36.

Forsén H, Tarvainen V, 2000. Accuracy and functionality of hand held wood moisture content meters. VTT publications nº 420. 95 pp. Finland. ISBN 951-38-5581-3.

ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. International Organization for Standardization, Geneva.

Li H, Perrin M, Eyma F, Jacob X, Gibiat V, 2018. Moisture content monitoring in glulam structures by embedded sensors via electrical methods. Wood Sci Technol 52:733-752. https://doi.org/10.1007/s00226-018-0989-y

Niklewski J, Isaksson T, Frühwald Hansson E, Thelandersson S, 2018. Moisture conditions of rain-exposed glue-laminated timber members: the effect of different detailing. Wood Material Sciencie&Engineering 13 (3): 129-140. https://doi.org/10.1080/17480272.2017.1384758

Samuelsson, A, 1990. Resistanskurvor für elektriska fuktkvotsmätare. TräteknikCentrum, Rapport L 9006029. Stockholm. 37 pp.

Samuelsson A, 1992. Calibration curves for resistance-type moisture meters. Paper presented at the 3rd IUFRO International Wood Drying Conference, Vienna, 18-21 August 1992.

Stamm AJ, 1927. The electrical resistance of wood as a measure of its moisture content. Ind. Eng. Chem. 19:1021-1025. https://doi.org/10.1021/ie50213a022

Tannert T, Müller A, Vogel M, 2010. Structural health monitoring of timber bridges. International Conference on Timber Bridges (ITCB 2010). Lillehammer, Norway 12-15 September 2010.

Tannert T, Vogel M, Berger R, Müller A, 2011. Remote moisture monitoring of timber bridges: a case study. 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5), 11-15 December 2011, Cancún, México

Vermaas HF, 1982. D.C. Resistance moisture meters for wood. Part I.: review of some fundamentals considerations. South African Forestry Journal, 121:1, 88-92. https://doi.org/10.1080/00382167.1982.9628815

Published
2021-04-28
How to Cite
Conde Garcia, M., Conde Garcia, M., & Fernández-Golfín, J. I. (2021). Improving the accuracy of wood moisture content estimation in four European softwoods from Spain. Forest Systems, 30(1), e002. https://doi.org/10.5424/fs/2021301-17798
Section
Research Articles