Sources of phenotypic variation of wood density and relationships with mean growth in two Eucalyptus species in Argentina

  • Pamela-Cecilia Alarcón Instituto Nacional de Tecnología Agropecuaria, Estación experimental Concordia, Concordia, Entre Ríos, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina http://orcid.org/0000-0003-1715-6602
  • Maria-Elena Fernández Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Ecología Forestal, EEA Balcarce, AER Tandil, Argentina Laboratorio Internacional Asociado (LIA) FORESTIA, INRAE Francia - INTA, Argentina http://orcid.org/0000-0002-0406-7398
  • Gustavo-Pedro-Javier Oberschelp Instituto Nacional de Tecnología Agropecuaria, Estación experimental Concordia, Concordia, Entre Ríos, Argentina
  • Pablo Pathauer Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos - CIRN EEA Castelar (Buenos Aires), Argentina
  • Alejandro Martínez-Meier Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Bariloche (San Carlos de Bariloche), Argentina Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), INTA - CONICET (San Carlos de Bariloche), Argentina Laboratorio Internacional Asociado (LIA) FORESTIA, INRAE Francia - INTA, Argentina http://orcid.org/0000-0001-9139-8023

Abstract

Aims of the study: To describe the radial patterns of wood density, and to identify their main sources of variation, and the potential tradeoffs with mean tree growth, in two Eucalyptus species.

Area of study: Mesopotamian (Corrientes and Entre Ríos provinces) and Pampean region (Buenos Aires province) of Argentina.

Materials and methods: Eucalyptus grandis and Eucalyptus viminalis, growing in genetic trials installed in two sites per species were studied. X-ray wood microdensity profiles were developed from core samples. Each profile was proportionally divided in 10 sections. Mean, maximum, minimum and the standard deviation of wood density, for each section were computed. Mean annual growth was used to study the relationships with wood microdensity variables. A linear mixed-effects model computed the significance of different sources of phenotypic variation. Pearson´s correlation computed the relationships between variables.

Main results: The pattern of radial variation in E. grandis showed a decrease in wood density from pith to bark, mainly due to the decrease in minimum wood density, while in E. viminalis, wood density increased towards the outer wood. In both species, the standard deviation of the wood density increased along the radial profile from pith to bark. Significant variation in wood density was explained by site, provenance and clone/family effects. In E. grandis mean, maximum and minimum wood density were negatively correlated with mean growth, whereas in E. viminalis correlations were positive but close to zero.

Research highlights: Both the pattern of radial variation of wood density and the relationship between wood density and mean growth were different in the studied Eucalyptus species, and they varied within species depending on the site they were growing and genetic provenance.

Keywords: wood microdensity profile; wood properties; wood products; phenotypic plasticity; Eucalyptus grandis; Eucalyptus viminalis.

Downloads

Download data is not yet available.

Author Biography

Pamela-Cecilia Alarcón, Instituto Nacional de Tecnología Agropecuaria, Estación experimental Concordia, Concordia, Entre Ríos, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Becaria de finalizacion de doctorado. Area de Genetica Forestal.

References

Alarcón PC, Fernández ME, Pathauer P, Harrand L, Oberschelp GPJ, Monteoliva S, Martínez Meier A, 2018. Comparación de metodologías para la estimación de la densidad de la madera y sus implicancias en la estimación de parámetros genéticos en tres especies del género Eucalyptus. Revista de la Facultad de Agronomía, La Plata 117 (2): 273-281.

Alves A, Hevia A, Simões R, Majada J, Alia R, Rodrigues J, 2020. Improving spatial synchronization between X-ray and near-infrared spectra information to predict wood density profiles. Wood Sci Technol, 54(5), 1151-1164. https://doi.org/10.1007/s00226-020-01207-z

Aparicio L, Caniza F, Larocca F, 2011. Crecimiento y caracteres de la madera de materiales genéticos de Eucalyptus grandis con manejo para uso solido en un suelo "malezal". Resultados a los 8 años de edad. Reunión conjunta Consorcios Forestales Corrientes Norte, Corrientes Centro y Río Uruguay. Forestal Argentina S.A. Paso de los Libres (Corrientes, Argentina).

Apiolaza LA, Raymond CA, YEO BJ, 2005. Genetic Variation of Physical and Chemical Wood Properties of Eucalyptus globulus. Silvae Genetica 54, 4-5. https://doi.org/10.1515/sg-2005-0024

Apiolaza LA, Chuahan S, Hayes M, Nakada R, Sharma M, Walker J, 2013. Selection and breeding for wood quality: a new approach. New Zealand J For 58(1):32-37.

Arango B, Tamayo L, 2008. Wood Density in Eucalyptus clones by X-Rays Densitometry. Revista Facultad Ingenieria Universidad de Antioquia (45):87-99.

Bao F, Jiang Z, Jiang X, Lu X, 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Sci Technol 35, 363-375 https://doi.org/10.1007/s002260100099

Bates DM, 2010. lme4: Mixed-effects modeling with R. Springer. https://r-forge.r-project.org/scm/viewvc.php/*checkout*/www/lMMwR/lrgprt.pdf?revision=600&root=lme4&pathrev=601

Barnett JR, Jerominidis G, 2003. Wood quality and biological basis. CRCPress, London. 226 pp.

Barotto AJ, Monteoliva S, Gyenge J, Martinez Meier A, Moreno K, Teson Natalia, Fernández ME, 2017. Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity. For Syst 26(1), e010, 11 pp. https://doi.org/10.5424/fs/2017261-10446

Bermúdez Alvite JD, Touza Vázquez M, Sanz Infante F, 2002. Manual de la madera de Eucaliptus blanco. Fundación para o Fomento da Calidade Industrial e o Desenvolvemento Tecnológico de Galicia. Parque Tecnológico. Galicia, España.

Bouriaud O, Leban JM, Bert D, Deleuze C, 2005. Intraannual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25, 651-660. https://doi.org/10.1093/treephys/25.6.651

Burdon RD, MooreJR, 2018. Adverse genetic correlations and impacts of silviculture involving wood properties: analysis of issues for radiata pine, Forests 9, 6, 308 pp. https://doi.org/10.3390/f9060308

Cappa EP, Pathauer PS, López GA, 2010. Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina Tree Genetics & Genomes 6 (6): 981-994. https://doi.org/10.1007/s11295-010-0307-9

Castro da Silva J, 2002. Caracterização da madeira de Eucalyptus grandis Hill ex. Maiden, de diferentes idades, visando a sua utilização na indústria moveleira. Tesis de grado. Universidade Federal do Paraná, Brasil.

Cobas AC, 2012. Modelos de variación de propiedades del leño juvenil a maduro en Salicáceas y su influencia sobre pulpas quimimecánicas. Tesis doctoral. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. 213 pp.

Cobas AC, Area MC, Monteoliva S, 2014. Patrones de variación de la densidad de la madera y morfometría celular de Salix babylonica para la determinación de la edad de transición entre madera juvenil y madura. Maderas. Ciencia Tecnol 16(3): 343-354. https://doi.org/10.4067/S0718-221X2014005000027

Downes G, Hudson I, Raymond C, Dean A, Micheli A, Schimlek L, Evans R, Muneri A, 1997. Sampling Eucalyptus for wood and fiber properties. Australia. CSIRO Publishing. 132 pp. https://doi.org/10.1071/9780643105287

Lizana AI, 2006. Densidad básica de la madera de Eucalyptus globulus en dos sitios en Chile. Tesis de grado. Universidad Austral de Chile. Facultad de Ciencias Forestales. 50 pp.

Evans JW, Senft JF, Green D, 2000. Juvenile wood effect in red alder: Analysis of physical and mechanical data to delineate juvenile and mature wood zones. For Prod J 50: 7/8.

Faraway JJ, 2006. Extending the linear model with R. Generalized linear, mixed effects and nonparametric regression models. Boca Raton, USA. Chapman and Hall/CRC. 301 pp.

Fukasawa K, 1984. Juvenile wood of harwoods judged by density variation. IAWA Bulletin 5: (1). https://doi.org/10.1163/22941932-90000861

George J-P, Schueler S, Karanitsch-Ackerl S, Mayer K, Klumpp RT, Grabner M, 2015. ) Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agric For Meteorol, 214-215, 430-443. https://doi.org/10.1016/j.agrformet.2015.08.268

Gonçalves JL, Stape JL, Laclau JP, Smethurst P, Gava JL, 2004. Silvicultural effects on the productivity and wood quality of eucalypt plantations. For Ecol Manag 193, 45-61. https://doi.org/10.1016/j.foreco.2004.01.022

Guay R, Gagnon R, Morin H, 1992. A new automatic and interactive tree ring measurement system based on a line scan camera. Forestal Chronicle 68, 138-141. https://doi.org/10.5558/tfc68138-1

Harrand L, López JA, 2007. El pilodyn en el mejoramiento genético de la densidad de la madera. XXII Jornadas Forestales de Entre Ríos (Concordia, Argentina).

Harrand L, Hernández JJV, Upton JL, Valverde GR, 2009. Genetic parameters of growth traits and wood density in Eucalyptus grandis progenies planted in Agentina. Silvae Genetica 58: 11-19. https://doi.org/10.1515/sg-2009-0002

Hernández M, Zaderenko C, Monteoliva S, 2014. Growth stresses and physical properties of Eucalyptus dunnii wood in Argentina. Maderas. Ciencia y tecnología 16(3): 373-384.

Iglesias-Trabado G, Wilstermann D, 2009. Eucalyptus universalis. Global cultivated eucalypt forests map 2009. http://git-forestryblog. blogspot.com/2008/09/eucalyptus-global-map-2008-cultivated.html

Hevia A, Campelo F, Chambel R, Vieira J, Alía R, Majada J, Sánchez-Salguero R, 2020. Which matters more for wood traits in Pinus halepensis Mill., provenance or climate? Ann For Sci 77, 55. https://doi.org/10.1007/s13595-020-00956-y

Igartúa D, Monteoliva S, 2010. Basic wood density, fiber length and growth rate in two Eucalyptus globulus provenances from Argentina. Bosque 31(2): 150-156. https://doi.org/10.4067/S0717-92002010000200008

Iwakiri S, Monteiro de Matos L, Prata JG, Trianoski R, Soare da Silva L, 2013. Evaluation of the use potential of nine species of genus Eucalyptus for production of veneers and plywood panels. Cerne Lavras 19 (2): 263-269. https://doi.org/10.1590/S0104-77602013000200010

Kien DK, Jansson G, Harwood C, Almqvist C, Thinh HH, 2008. Genetic variation in wood basic density and pilodyn penetration and their relationships with growth, stem straightness, and branch size for Eucalyptus urophylla in Northern Vietnam. New Zealand For Sci 38(1): 160-175.

Klisz M, Koprowski M, Ukalska J, Nabais C, 2016. Does the genotype have a significant effect on the formation of intra-annual density fluctuations? A case study using Larix decidua from Northern Poland. Frontiers Plant Sci 7, 691. https://doi.org/10.3389/fpls.2016.00691

Larson P, Kretschmann D, Clark A, Isebrands J, 2001. Formation and properties of juvenile wood in southern pines: a synopsis. Gen. Tech. Rep. FPL-GTR-129, Madison, Wisconsin, USA. USDA Forest Service, ForProd Laborat. 42 pp. https://doi.org/10.2737/FPL-GTR-129

Le Quéré C, Moriarty R, Andrew R, Cnadell J, Sitch S, Korsbakken J, Friedlingstein P, Peters G, Andres R, Boden T et al., 2015. Global carbon budget 2015. Earth Syst Sci Data 7: 349-396.

López AJ, López JA, 2011. Eucalyptus grandis en el sudeste de Corrientes: variación de la densidad de la madera. XXV Jornadas Forestales de Entre Ríos. Concordia (Agentina).

López AJ, Hernández MA, López J, Mastrandrea C, Martínez MS, Oberschelp G.P. Javier, Harrand L, 2018. Tensiones de crecimiento, propiedades físicas, mecánicas y defectos en tablas de clones puros e hibridos de Eucalyptus grandis del INTA. XXXII Jornadas forestales de Entre Ríos. Concordia (Argentina).

Marco M, White TL, 2002. Genetic parameter estimates and genetic gains for Eucalyptus grandis and E. dunni in Argentina. For Genet 9: 205-215.

Martinez-Meier A, Gallo L, Pastorino M, Mondino V, Rozenberg P, 2011. Variación fenotípica de la densidad básica de la madera de árboles plus de Pinus ponderosa. Bosque 32(3): 221-226. https://doi.org/10.4067/S0717-92002011000300003

Martinez Meier A, Fernandez ME, Dalla- Salda G, Gyenge J, Licata J, Rozenberg P, 2015. Ecophysiological basis of wood formation in ponderosa pine: Linking water flux patterns with wood microdensity variables. For Ecol Manag 346, 31-40. https://doi.org/10.1016/j.foreco.2015.02.021

Monteoliva S, Barotto AJ, Alarcón P, Tesón N, Fernández ME, 2017. Densidad de la madera como variable integradora de la anatomía del leño: análisis de ramas y fuste en cuatro especies de Eucalyptus. Revista Facultad Agronomía La Plata 116 (1): 1-11.

Moreno K, Igartua D, 2015. Eucalyptus globulus en el sudeste de la provincia de Buenos Aires: edades, procedencias y densidad de la madera. RIA (41) 2.

Murphy T, Henson M, Vanclay JK, 2005. Growth stress in Eucalyptus dunnii. Australian Forestry 68(2): 144-149. https://doi.org/10.1080/00049158.2005.10674958

Nabais C, Hansenb JK, Rakefet DS, Kliszd M, López R, Rozenberg P, 2018. The effect of climate on wood density: What provenance trials tell us?. For Ecol Manag 408: 148-156. https://doi.org/10.1016/j.foreco.2017.10.040

Núñez CE, 2011. Fiber morphology of Eucalyptus grandis wood implanted in the Argentinean Mesopotamia en relación a la madera juvenile. Revista Ciencia Tecnol 13(15): 25-29.

Otegbeye GO, Kellison RC, 1980. Genetics of wood and bark characteristics of Eucalyptus viminalis. Silvae Genetica 29: 27-31.

Olivar J, Rathgeber CBK, Ordonez C, Bravo F, 2013. Influencia del clima en la densidad de la madera de pinos mediterráneos (Pinus halepensis y Pinus pinaster). 6 Congreso Forestal Español. Vitoria Gasteiz (España).

Pathauer P, 2005. Capítulo III. 3. Subprograma Eucaliptos y Pinos en la región pampeana. En: Mejores árboles para más forestadores. Proyecto Forestal de Desarrollo. Secretaría de Agricultura, Ganadería, Pesca y Alimentos: 73-94.

Panshin A, de Zeeuw C, 1980. Textbook of wood technology. McGraw-Hill Book Company. 722 pp.

Polge H, 1966. Etablissement des courbes de variations de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants. Application dans les domaines technologiques et physiologiques. Phd thesis, Université de Nancy. 215 pp. https://doi.org/10.1051/forest/19660101

R core team, 2015. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Disponible: http://www.rproject.org/

Resquin F, Fariña I, Rachid C, Rava A, Doldan J, 2012. Influencia de la edad de corte en el pulpeo de Eucalyptus globulus plantado en Uruguay. Agrociencia Uruguay (16)2: 27-38.

Rigling A, Braker O, Schneiter G, Schweingruber F, 2002. Intra-annual tree-ring parameters indicating differences in drought stress of Pinus Sylvestris forests within the Erico-Pinion in the Valais. Plant ecology 163: 105-121. https://doi.org/10.1023/A:1020355407821

Rozenberg P, Franc A, Bastien C, 2001. Improving models of wood density by including genetic effects: a case study in Douglas-fir. Ann For Sci 58, 385- 394. https://doi.org/10.1051/forest:2001132

Rozenberg P, Paques L, 2004. Evidence of the effect of the climate of year 2003 on Douglas-fir and larch wood formation in France. In: proceedings of conference ''Impacts of the Drought and Heat in 2003 on Forests''. Scientific Conference 17-19 November 2004. Freiburg, Germany, 57, 38.

Rozas V, Le Quesne C, Rojas Badilla M, 2016. Climatic factors controlling radial growth and formation of wood density fluctuations in Austrocedrus chilensis. Bosque 37(3):461-471. https://doi.org/10.4067/S0717-92002016000300003

SAGPyA, 2013. Sector Forestal año 2012 (estadísticas). http://64.76.123.202/new/0/forestacion/_archivos/_econo/sector%20forestal%202012.pdf. Abril 2015.

Salaya-Domínguez JM, López-Upton J, Vargas-Hernández J, 2012. Variación genética y ambiental en dos ensayos de progenies de Pinus patula. Agrociencia 46: 519-534.

Schweingruber FH, 1996. Tree Rings and Environment: Dendroecology. Berne, Switzerland: Paul Haupt AG Bern.

Souza MA, 2006. Metodologias não destrutivas para avaliação das tensões de crescimento em Eucalyptus dunnii Maiden. Tesis Doctoral. Universidad Federal do Paraná, Curitiba, Brasil, 90 pp.

Thomas DS, Montagu KD, Conroy JP, 2004. Changes in wood density of Eucalyptus camaldulensis due to temperature the physiological link between water viscosity and wood anatomy. For Ecol Manag 193: 157-165. https://doi.org/10.1016/j.foreco.2004.01.028

Vinuesa P. 2016. Topic 8: Correlations: theory and practice. https://www.ccg.unam.mx/~vinuesa/R4biosciences/docs/Tema8_correlacion.html

Wimmer R, Downes GM, 2003. Temporal variation of the ring width-wood density relationship in Norway spruce grown under two levels of anthropogenic disturbance. IAWA J, 24(1): 53-61. https://doi.org/10.1163/22941932-90000320

Zobel B, JB Jett, 1995. Genetics of wood production. Berlin-Heidelberg, Germany. Springer-Verlag. 337 pp. https://doi.org/10.1007/978-3-642-79514-5

Zobel B, Sprague J, 1998. Juvenile Wood in Forest Trees. Berlin-Heidelberg, Germany. Springer-Verlag. 300 pp. https://doi.org/10.1007/978-3-642-72126-7

Zobel B, van Buijtenen J, 1989. Wood variation and Wood Proprieties. In: Wood Variation. Its Causes and Control. Springer Series in Wood Science. Springer, Berlin, Heidelberg. 355 pp. https://doi.org/10.1007/978-3-642-74069-5

Published
2021-09-21
How to Cite
Alarcón, P.-C., Fernández, M.-E., Oberschelp, G.-P.-J., Pathauer, P., & Martínez-Meier, A. (2021). Sources of phenotypic variation of wood density and relationships with mean growth in two Eucalyptus species in Argentina. Forest Systems, 30(3), e013. https://doi.org/10.5424/fs/2021303-17208
Section
Research Articles