Deadwood volume and quality in recreational forests: the case study of the Belgrade forest (Turkey)

  • Selim Bayraktar Department of Landscape Architecture, Faculty of Forestry, İstanbul University – Cerrahpasa.
  • Alessandro Paletto Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA). http://orcid.org/0000-0001-8708-3723
  • Antonio Floris Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA).

Abstract

Aim of the study: The aim of this study is to understand quantitative and qualitative characteristics of deadwood in recreational forests.

Area of study: Belgrade forest in the North of Istanbul city (Turkey).

Material and methods: The data has been collected through a stratified sampling scheme that has randomly located 50 clusters formed by 3 sample plots each (150 sample plots).

Main results: The results show an average deadwood volume of 16.49 m3 ha-1 (81.5% in logs, 16.4% in snags, 2.1% in stumps). The highest volume of deadwood is in oldest forests (age over 180 years) with an average value of 20.39 m3 ha-1, followed by forests with 61-120 years with 15.77 m3 ha-1. Concerning forest management objectives, the results show that average deadwood volume is 13.66 m3 ha-1 in the forest section managed for water resource conservation and 21.14 m3 ha-1 in the forest section managed for recreational purposes.

Research highlights: Deadwood management in the recreational forests must consider both biodiversity conservation and recreational attractiveness of an area.

Keywords: forest management; forest types; forest accessibility; stand age; wood decomposition rate.

Downloads

Download data is not yet available.

References

Arslan N, 2011. Orman İşletme Şefliği (Belgrad Ormanı)'nde ölü ağaç miktarı üzerine araştırmalar. MSc Thesis, Istanbul University, Institute of Science, Istanbul, Turkey.

Arslangündoğdu Z, Yılmaz E, 2011. The Effects of Tree stand layers on Resident Bird Species in Belgrade Forest, Istanbul, Turkey. Allg Forst- u J-Ztg 182: 25-29.

Atici E, Colak AH, Rotherham ID 2008. Coarse Dead Wood Volume of Managed Oriental Beech (Fagus orientalis Lipsky) Stands in Turkey. Investigación Agraria: Sistemas y Recursos Forestales 17(3): 216-227. https://doi.org/10.5424/srf/2008173-01036

Banaś J, Bujoczek L, Zięba S, Drozd M, 2014. The effects of different types of management, functions, and characteristics of stands in Polish forests on the amount of coarse woody debris. Eur J Forest Res 133: 1095-1107. https://doi.org/10.1007/s10342-014-0825-3

Bauhus J, Puettmann K, Messier C, 2009. Silviculture for old-growth attributes. Forest Ecol Manag 258: 525-537. https://doi.org/10.1016/j.foreco.2009.01.053

Behjou FK, Lo Monaco A, Tavankar F, Venanzi R, Nikooy M, Mederski PS, Picchio R, 2018. Coarse Woody Debris Variability Due to Human Accessibility to Forest. Forests 9: 509. https://doi.org/10.3390/f9090509

Bell G, Kerr A, McNickle D, Woollons R, 1996. Accuracy of the line intersect method of post-logging sampling under orientation bias. Forest Ecol Manag 84: 23-28. https://doi.org/10.1016/0378-1127(96)03773-5

Beskardes V, Keten A, Kumbasli M, Pekin B, Yilmaz E, Makineci E, Ozdemir E, Zengin H, 2018. Bird composition and diversity in oak stands under variable coppice management in Northwestern Turkey. iForest 11: 58-63. https://doi.org/10.3832/ifor2489-010

BFMP, 2012. Bentler Forest Management Plan. Republic of Turkey General Directorate of Forestry, Istanbul, Turkey.

Brown S, 2002. Measuring carbon in forests: Current status and future challenges. Environ Pollut 116: 363-372. https://doi.org/10.1016/S0269-7491(01)00212-3

Çaglayan AY, 1999. Belgrad ormaninda rekreasyonel talep ozelliklerinin saptanmasi. MSc Thesis, Istanbul University, Institute of Science, Istanbul, Turkey.

Cakir M, Makineci E, Kumbasli M, 2010. Comparative study on soil properties in a picnic and undisturbed area of Belgrad forest. Istanbul. J Environ Biol 31(1): 125.

Cannell MGR, 1984. Woody biomass of forest stands. Forest Ecol Manag 8: 299-312. https://doi.org/10.1016/0378-1127(84)90062-8

Castagneri D, Garbarino M, Berretti R, Motta R, 2010. Site and stand effects on coarse woody debris in montane mixed forests of Eastern Italian Alps. Forest Ecol Manag 260: 1592-1598. https://doi.org/10.1016/j.foreco.2010.08.008

Çoban S, Bayraktar S, Akgül M, 2016. Forest vegetation maps and its development in Turkey: a case from Istanbul Belgrade forest. Forest Rev 47(1): 7-16.

De Meo I, Angelli EA, Graziani A, Kitikidou K, Lagomarsino A, Milios E, Radoglou K, Paletto A, 2017. Deadwood volume assessment in Calabrian pine (Pinus brutia Ten.) peri-urban forests: Comparison between two sampling methods. J Sustain Forest 36(7): 666-686. https://doi.org/10.1080/10549811.2017.1345685

De Meo I, Lagomarsino A, Agnelli AE, Paletto A, 2018. Direct and Indirect Assessment of Carbon Stock in Deadwood: Comparison in Calabrian Pine (Pinus brutia Ten. subsp. brutia) Forests in Italy. Forest Sci 65(4): 460-468. https://doi.org/10.1093/forsci/fxy051

Debeljak M, 2006. Coarse woody debris in virgin and managed forest. Ecol Indic 6: 733-742. https://doi.org/10.1016/j.ecolind.2005.08.031

Ebenberger M, Arnberger A, 2019. Exploring visual preferences for structural attributes of urban forest stands for restoration and heat relief. Urban For Urban Green 41: 272-282. https://doi.org/10.1016/j.ufug.2019.04.011

Eker Ö, 2007. An Economic Analysis of Multiple Use of Forests: Belgrade Forest Example. J Appl Sci Res 3(11): 1472-1475.

Eker Ö, 2008. Recreational Carrying Capacity of Belgrade Forest: A Case Study. KSU J Sci Eng 11(2): 77-80.

Enrong Y, Xihua W, Jianjun H, 2006. Concept and Classification of Coarse Woody Debris in Forest Ecosystems. Front Biol China 1: 76-84. https://doi.org/10.1007/s11515-005-0019-y

Green P, Peterken GF, 1997. Variation in the amount of dead wood in the woodlands of the Lower Wye Valley, UK in relation to the intensity of management. Forest Ecol Manag 98: 229-238. https://doi.org/10.1016/S0378-1127(97)00106-0

Herrero C, Monleon VJ, Gómez N, Bravo F, 2016. Distribution of dead wood volume and mass in Mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory. Forest Syst 25(3): e069. https://doi.org/10.5424/fs/2016253-09009

Hofgaard A, 2000. Structure and regeneration pattern in a virgin Picea abies forest in northern Sweden. J Veg Sci 4: 601-608. https://doi.org/10.2307/3236125

IPCC, 2003. Good practice guidance for land use, land-use change and forestry. The Intergovernmental Panel on Climate Change (IPCC) National Greenhouse Gas Inventories Programme, Kanagawa.

Jankovska I, Straupe I, Brumelis G, Donis J, Kupfere L, 2014. Urban forests of Riga, Latvia - Pressures, Naturalness, Attitudes and Management. Baltic For 20: 342-351.

Jönsson MT, Jonsson BG, 2007. Assessing coarse woody debris in Swedish woodland key habitats, implications for conservation and management. Forest Ecol Manag 242: 363-373. https://doi.org/10.1016/j.foreco.2007.01.054

Karahalil U, Başkent EZ, Sivrikaya F, Kılıç B, 2017. Analyzing deadwood volume of Calabrian pine (Pinus brutia Ten.) in relation to stand and site parameters: a case study in Köprülü Canyon National Park. Environ Monit Assess 189: 112. https://doi.org/10.1007/s10661-017-5828-3

Lang M, Lilleleht A, Neumann M, Bronisz K, Rolim SG, Seedre M, Uri V, Kiviste A, 2016. Estimation of above-ground biomass in forest stands from regression on their basal area and height. Forestry Studies 64: 70-92. https://doi.org/10.1515/fsmu-2016-0005

Larjavaara M, Muller-Landau HC, 2011. Cross-Section Mass: An Improved Basis for Woody Debris Necromass Inventory. Silva Fenn 45(2): 291-298. https://doi.org/10.14214/sf.119

Marshall P, Davis G, LeMay V, 2000. Using Line Intersect Sampling for Coarse Woody Debris. Forest Research Technical Report, Vancouver.

Maser C, Trappe JM, 1984. The seen and unseen world of the fallen tree. Gen. Tech. Rep. PNW-164. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland. https://doi.org/10.2737/PNW-GTR-164

Mountford EP, 2002. Fallen dead wood levels in the near-natural beech forest at La Tillaie reserve, Fontainebleau, France. Forestry 75: 203-208. https://doi.org/10.1093/forestry/75.2.203

Næsset E, 1999. Relationship between relative wood density of Picea abies logs and simple classification systems of decayed coarse woody debris. Can J Forest Res 14: 454-461. https://doi.org/10.1080/02827589950154159

Notaro S, Paletto A, Raffaelli R, 2009. Economic impact of forest damage in an Alpine environment. Acta Silvatica & Lignaria Hungarica 5: 131-143.

Özcan M, Gökbulak F, Hizal A, 2013. Exclosure effects on recovery of selected soil properties in a mixed broadleaf forest recreation site. Land Degrad Dev 24(3): 266-276. https://doi.org/10.1002/ldr.1123

Özhan S, Gökbulak F, Serengil Y, Özcan M, 2010. Evapotranspiration from a Mixed Deciduous Forest Ecosystem. Water Resour Manage 24: 2353-2363. https://doi.org/10.1007/s11269-009-9555-6

Paletto A, Agnelli AE, De Meo I, 2020. Carbon stock in deadwood: the mountain birch (Betula pubescens subsp. czerepanovii) forests in the Khibiny Mountains (Russia). J Sustain Forest (in press). https://doi.org/10.1080/10549811.2020.1767144

Paletto A, De Meo I, Cantiani P, Ferretti F, 2014. Effects of forest management on the amount of deadwood in Mediterranean oak ecosystems. Ann Forest Sci 71: 791-800. https://doi.org/10.1007/s13595-014-0377-1

Paletto A, Tosi V, 2010. Deadwood density variation with decay class in seven tree species of the Italian Alps. Scand J Forest Res 25: 164-173. https://doi.org/10.1080/02827581003730773

Pastorella F, Avdagić A, Čabaravdić A, Mraković A, Osmanović M, Paletto A, 2016. Tourists' perception of deadwood in mountain forests. Ann Forest Res 59: 311-326. https://doi.org/10.15287/afr.2016.482

Pastorelli R, Paletto A, Agnelli AE, Lagomarsino A, De Meo I, 2020. Microbial communities associated with decomposing deadwood of downy birch in a natural forest in Khibiny Mountains (Kola Peninsula, Russian Federation). Forest Ecol Manag 455: (in press). https://doi.org/10.1016/j.foreco.2019.117643

Pelyukh O, Paletto A, Zahvoyska L, 2019. People's attitudes towards deadwood in forest: evidence from the Ukrainian Carpathians. J For Sci 65: 171-182. https://doi.org/10.17221/144/2018-JFS

Piętka S, Sotnik A, Damszel M, Sierota Z, 2019. Coarse woody debris and wood-colonizing fungi differences between a reserve stand and a managed forest in the Taborz region of Poland. J Forest Res 30(3): 1081-1091. https://doi.org/10.1007/s11676-018-0612-y

Prasad AE, 2009. Tree community change in a tropical dry forest: the role of roads and exotic plant invasion. Environ Conserv 36: 201-207. https://doi.org/10.1017/S0376892909990257

Puletti N, Canullo R, Mattioli W, Gawryś R, Corona P, Czerepko J, 2019. A dataset of forest volume deadwood estimates for Europe. Ann Forest Sci 76: 68. https://doi.org/10.1007/s13595-019-0832-0

QGIS Development Team 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org".

Radu S, 2006. The ecological role of deadwood in natural forests. J Environ Sci Eng 3: 137-141. https://doi.org/10.1007/978-3-540-47229-2_16

Rahman M, Frank G, Ruprecht H, Vacik H, 2008. Structure of coarse woody debris in Lange-Leitn Natural Forest Reserve, Austria. J Forest Sci 54(4): 161-169. https://doi.org/10.17221/3102-JFS

Russell MB, Fraver S, Aakala T, Woodall CW, D'Amato AW, Ducey MJ, 2015. Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecol Manag 350: 107-128. https://doi.org/10.1016/j.foreco.2015.04.033

Sefidi K, Etemad V, 2016. Dead wood characteristics influencing macrofungi species abundance and diversity in Caspian natural beech (Fagus orientalis Lipsky) forests. Forest Syst 24(2): eSC03. https://doi.org/10.5424/fs/2015242-06039

Simkin J, Ojala A, Tyrväinen L, 2020. Restorative effects of mature and young commercial forests, pristine oldgrowth forest and urban recreation forest - A field experiment. Urban For Urban Green 48: 126567. https://doi.org/10.1016/j.ufug.2019.126567

Skwarek K, Bijak S, 2015. Resources of dead wood in the municipal forests in Warsaw. For Res Paper 76: 322-330. https://doi.org/10.1515/frp-2015-0031

Tobin B, Black K, McGurdy L, Nieuwenhuis M, 2007. Estimates of decay rates of components of coarse woody debris in thinned Sitka spruce forests. Forestry 80(4): 455-469. https://doi.org/10.1093/forestry/cpm024

Tomescu R, Tarziu DR, Turcu DO, 2011. The Importance of Dead Wood in the Forest. ProEnvironment 4: 10-19.

Topacoğlu O, Kara F, Yer EN, Savci M, 2017. Determination of deadwood volume and the affecting factors in Trojan fir forests. Austrian J Forest Sci 3: 245-260.

Tyrväinen L, Silvennoinen H, Kolehmainen O, 2003. Can ecological and aesthetic values be combined in urban forest management? Urban For Urban Green 1: 135-149. https://doi.org/10.1078/1618-8667-00014

van Wagner CE, 1968. The line intersect method for forest fuel sampling. Forest Sci 14: 20-26.

Warren WG, Olsen PF, 1964. A line-intersect technique for assessing logging waste. Forest Sci 10: 267-276.

Published
2020-11-16
How to Cite
Bayraktar, S., Paletto, A., & Floris, A. (2020). Deadwood volume and quality in recreational forests: the case study of the Belgrade forest (Turkey). Forest Systems, 29(2), e008. https://doi.org/10.5424/fs/2020292-16560
Section
Research Articles