A new and rapid micropropagation protocol for Eucalyptus grandis Hill ex Maiden

  • Anabel-Viviana Di-Gaudio 1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Relaciones Hídricas - Acuaporinas. No. 2. Ciudad Autónoma de Buenos Aires. 2 CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires.
  • Esteban Tubert 1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Relaciones Hídricas - Acuaporinas. No. 2. Ciudad Autónoma de Buenos Aires. 2 CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires.
  • Leandro-Ezequiel Laino 1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Relaciones Hídricas - Acuaporinas. No. 2. Ciudad Autónoma de Buenos Aires. 2 CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires.
  • Jose-María Chaín 1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Relaciones Hídricas - Acuaporinas. No. 2. Ciudad Autónoma de Buenos Aires. 2 CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires.
  • Sandra-Irene Pitta-Alvarez 3 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Cultivo Experimental de Plantas y Microalgas. No. 68. Ciudad Autónoma de Buenos Aires. 4 CONICET - Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO). Ciudad Autónoma de Buenos Aires.
  • Gabriela Amodeo 1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Relaciones Hídricas - Acuaporinas. No. 2. Ciudad Autónoma de Buenos Aires. 2 CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires.
  • Jose-Javier Regalado-Gonzalez Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental CONICET - Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO). http://orcid.org/0000-0003-1664-2000

Abstract

Aim of the study: We developed a faster micropropagation protocol specifically designed for Eucalyptus grandis. Eucalyptus breeding programs use micropropagation protocols to obtain high quality cloned seedlings, but current protocols are excessively time consuming.

Area of the study: The protocol has been developed in Argentina, but it can be applied in anywhere.

Materials and methods: We used nodal segments as initial explants to obtain micropropagated shoots, which were then simultaneously rooted ex vitro and acclimated in a hydroponic system. Nodal segments were cultured in a MS medium supplemented with 1 mg l-1 6-benzylaminopurine, 30 g l-1 sucrose, 1 g l-1 active charcoal and 8 g l-1 agar and incubated for four weeks at 25 ± 2°C under 16 h day photoperiod. Then, micropropagated shoots were exposed 15 seconds to 5000 ppm indol-butyric acid prior to being transferred to a hydroponic system, allowing simultaneous ex vitro rooting and acclimatization.

Main results: 73 ± 9% of nodal segments grew to generate 1.73 ± 1.03 shoots per explant (length: 0.76 ± 0.44 cm). After four weeks in hydroponic system, 46 ± 4 % of micropropagated shoots developed roots, which represents an acceptable and intermediate rate of success, compared to the reported in vitro rooting rates.

Research highlights: Our protocol allowed to obtain micropropagated seedlings in a total timespan of 8 weeks. Our results show that, by utilizing a hydroponic system, traditional protocols to micropropagate Eucalyptus can be substantially enhanced, allowing for improved production dynamics and potentially resulting in better organized seedling manufacturing facilities.

Keywords: Woody plants; silviculture; nursery seedlings; rooting methods; hydroponics; acclimatization.

Downloads

Download data is not yet available.

References

Albaugh TJ, Albaugh JM, Fox TR, Allen HL, Rubilar RA, Trichet P, Loustau D, Linder S, 2016. Tamm Review: light use efficiency and carbon storage in nutrient and water experiments on major forest plantation species. For Ecol Manag 376: 333-342. https://doi.org/10.1016/j.foreco.2016.05.031

Almeida MR, Bastiani D, Gaeta ML, Mariath JEA, Costa F, Retallick J, Nolan L, Tai HH, Strömvik MV, Fett-Neto AG 2015. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus. Plant Sci 239: 155-165. https://doi.org/10.1016/j.plantsci.2015.07.022

Booth TH, 2013. Eucalypt plantations and climate change. For Ecol Manag 301: 28-34. https://doi.org/10.1016/j.foreco.2012.04.004

Borges SR, Xavier A, Oliveira LS, Lopes AP, Otoni WC 2011. Multiplicação in vitro de clones híbridos de Eucalyptus globulus. Rev Árvore 35: 173-182. https://doi.org/10.1590/S0100-67622011000200001

Clapa D, Fira A, Joshee N, 2013. An efficient ex vitro rooting and acclimatization method for horticultural plants using float hydroculture. Hort Sci 48: 1159-1167. https://doi.org/10.21273/HORTSCI.48.9.1159

de Assiss TF, 2001. Evolution of technology for cloning Eucalyptus in large scale. Developing the Eucalypt of the Future. IUFRO, Chile. 1-6.

Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY, 2005. Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets. Plant Growth Reg 46: 241-251. https://doi.org/10.1007/s10725-005-0161-1

Egerton-Warburton L, 2015. Aluminum-tolerant pisolithus ectomycorrhizas confer increased growth, mineral nutrition, and metal tolerance to eucalyptus in acidic mine spoil. Appl Environ Soil Sci 2015:803821. https://doi.org/10.1155/2015/803821

FAO, 2008. Eucalyptus Universalis. Cultivated Eucalypt Forests Global Map. FAO Department of Forestry, Rome, V. 1.0.

Frangi JL, Perez CA, Goya JF, Arturi M, 2016. Experimental model of Eucalyptus grandis plantation in Concordia, Entre Rios. Bosque 37: 191-204. https://doi.org/10.4067/S0717-92002016000100018

Hajari E, Watt MP, Mycock DJ, McAlister B, 2006. Plant recognition from induced callus of improved Eucalyptus clones. S Afr J Bot 72: 195-201. https://doi.org/10.1016/j.sajb.2005.07.003

Iori V, Pietrini F, Bianconi D, Mughini G, Massacci A, Zacchini M (2017). Analysis of biometric, physiological, and biochemical traits to evaluate the cadmium phytoremediation ability of eucalypt plants under hydroponics. IForest 10: 416-421. https://doi.org/10.3832/ifor2129-009

Jasrai YT, Remakanthan A, Pandya CH, Subramani J, Bhatt DP, 1999. Multiplication of Eucalyptus citriodora (L.) Hook through shoot bud induction on the internodal portions of mature tree explants. J Plant Biochem Biotechnol 8: 103-104. https://doi.org/10.1007/BF03263067

Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güçlü J, Vinh J, Heyes J, Franck KI, Schäffner, AR, Bouchez D, Maurel C, 2003. Role of a single aquaporin isoform in root water uptake. The Plant Cell 15: 509-522. https://doi.org/10.1105/tpc.008888

Jones NB, van Staden J, 1994. Micropropagation and establishment of Eucalyptus grandis hybrids. S Afr J Bot 60: 122-126. https://doi.org/10.1016/S0254-6299(16)30643-3

MAGyP, 2014. Argentina: plantaciones forestales y gestión sostenible. URL http://forestoindustria.magyp.gob.ar/archivos/gestion-forestal-sostenible/publi_ambiental.pdf (Accessed 8 November 2018).

Mokotedi MEO, Watt MP, Pammenter NW, 2000. In vitro rooting and subsequent survival of two clones of a cold-tolerant Eucalyptus grandis × E. nitens hybrid. Hort Sci 35: 1163-1165. https://doi.org/10.21273/HORTSCI.35.6.1163

Murashige T, Skoog F, 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nakhooda M, Jain SM, 2016. A review of Eucalyptus propagation and conservation. Propag Ornam Plants 16: 101-119.

Nakhooda M, Watt MP, Mycock D, 2011. Auxin stability and accumulation during in vitro shoot morphogenesis influences subsequent root induction and development in Eucalyptus grandis. Plant Growth Regul 65: 263-271. https://doi.org/10.1007/s10725-011-9597-7

Nakhooda M, Rambaran N, Mokotedi MEO, Watt MP, 2014. Sensitivity and response of Eucalyptus grandis × E. nitens cuttings to auxin treatment for rooting is consistent with, and can be predicted by in vitro morphogenesis. J Hortic Sci Biotechnol 89: 215-220. https://doi.org/10.1080/14620316.2014.11513071

Nawaz MF, Gul S, Tanvir MA, Akhtar J, Chaudary S, Ahmad I, 2016. Influence of NaCl-salinity on Pb-uptake behavior and growth of River Red gum tree (Eucalyptus camaldulensis Dehnh.). Turk J Agric For 40: 425-432. https://doi.org/10.3906/tar-1407-73

Niu F, Zhang D, Li Z, Van Iersel MW, Alem P, 2015. Morphological response of eucalypts seedlings to phosphorus supply through hydroponic system. Sci Hort 194: 295-303. https://doi.org/10.1016/j.scienta.2015.08.029

de Oliveira C, Degenhardt-Goldbach J, Bettencourt GMF, Amano E, Franciscon L, Quoirin M 2017. Micropropagation of Eucalyptus grandis x E. urophylla AEC 224 clone. J For Res 28: 29-39. https://doi.org/10.1007/s11676-016-0282-6

Piao XC, Chakrabarty D, Hahn EJ, Paek KY, 2004. The growth and photosynthetic characteristics of potato (Solanum tuberosum L.) plantlets as affected by hydroponic solution pH and EC, light, and CO2. J Am Soc Hort Sci 129: 100-105. https://doi.org/10.21273/JASHS.129.1.0100

Skolmen RG, Ledig FT, 1990. Eucalyptus globulus (Labill) Bluegum eucalyptus. In: Burns RM; Honkala BH, (Eds.) Silvics of North America 2. Forest service, Washington. 299-304.

Trueman SJ, Hung CD, Wendling I, 2018. Tissue culture of Corymbia and Eucalyptus. Forests 9: 84. https://doi.org/10.3390/f9020084

Wang SM, Piao XC, Park SY, Lian ML, 2013. Improved micropropagation of Gypsophila paniculata with bioreactor and factors affecting ex vitro rooting in microponic system. In vitro Cell Dev Biol-Plant 49: 70-78. https://doi.org/10.1007/s11627-012-9464-x

Watt MP, 2014. Genotypic-unspecific protocols for the commercial micropropagation of Eucalyptus grandis × nitens and E. grandis × urophylla. Turk J Agric For 38: 125-133. https://doi.org/10.3906/tar-1304-83

Watt MP, Duncan EA, Ing M, Blakeway FC, Herman B, 1995. Field performance of micropropagated and macropropagated Eucalyptus hybrids. South Afr For J 173: 17-21. https://doi.org/10.1080/00382167.1995.9629685

Watt MP, Berjak P, Makhathini A, Blakeway F (2003). In vitro field collection techniques for Eucalyptus micropropagation. Plant Cell Tissue Organ Cult 75: 233-240. https://doi.org/10.1023/A:1025819826742

Whitehouse AB, Marks TR, Edwards GA, 2002. Control of hyperhydricity in Eucalyptus axillary shoot cultures grown in liquid medium. Plant Cell Tissue Organ Cult 71: 245-252. https://doi.org/10.1023/A:1020360120020

Yang JC, Chung JD, Chen ZZ, 1995. Vegetative propagation of adult Eucalyptus grandis × urophylla and comparison of growth between micropropagated plantlets and rooted cuttings. Plant Cell Rep 15: 170-173. https://doi.org/10.1007/BF00193713

Zaytseva YG, Ambros EV, Novikova TI, 2018. Rooting and acclimatization to ex vitro conditions of regenerants of frost-resistant members of Rhododendron. Turczaninowia 21: 144-152. https://doi.org/10.14258/turczaninowia.21.1.13

Zobel BJ, 1993. Clonal forestry in the eucalypts. In: Ahuja MR; Libby WJ (Eds.) Clonal Forestry II. Springer, Berlin. 139-148. https://doi.org/10.1007/978-3-642-84813-1_7

Published
2020-05-14
How to Cite
Di-Gaudio, A.-V., Tubert, E., Laino, L.-E., Chaín, J.-M., Pitta-Alvarez, S.-I., Amodeo, G., & Regalado-Gonzalez, J.-J. (2020). A new and rapid micropropagation protocol for Eucalyptus grandis Hill ex Maiden. Forest Systems, 29(1), eSC04. https://doi.org/10.5424/fs/2020291-15965
Section
Short communications