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Abstract

The analysis of satellite images allows one to monitor the regeneration of vegetation after a fire. In this work, a
methodology for quantifying post fire vegetation cover was developed. The proposed methodology is based on the
examination of Landsat 7 ETM+ images by using Spectral Mixture Analysis (SMA) and involves the following steps:
a) pre-processing, b) inherent dimensionality image determination c) endmember characterization following two methods
that thus lead to different models: traditional method based on the knowledge of the area worked as well as Minimum
Noise Fraction and Pixel Purity Index method, d) model inversion and combination, e) comparison between the
vegetation cover estimated by each model and that measured in field, and f) selection of the most accurate model and
mapping of the vegetation cover for the study area.

The cover estimated provided by the different models exhibited a high correlation (Spearman’s correlation coefficient
>0.89). The average absolute difference between the estimated and field-measured vegetation cover obtained with the
most accurate model for each fire never exceeded 6%.
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Resumen

Evaluación de la cobertura de la vegetación después de un incendio mediante análisis de mezclas espectrales.
Aplicación y comparación de diferentes métodos de caracterización de factores de referencia

El análisis de imagines de satélite permite el seguimiento y evaluación de los procesos de restauración post-incendio.
En este trabajo se presentan parte de los resultados de una metodología dirigida a la cuantificación de la cobertura de la
vegetación después de un incendio. La metodología propuesta se basa en el empleo de imágenes Landsat 7 ETM+
mediante un Análisis de Mezclas Espectrales (SMA) y supone los siguientes procesos: a) pre-procesado de la imagen,
b) determinación de la dimensión intrínseca (inherent dimensionality) de la imagen c) selección y caracterización de los
factores de referencia (endmember) mediante dos métodos propuestos en la literatura: estudio previo de la zona de trabajo,
Minimum Noise Fraction y pixles puros (Pixel Purity Index), d) inversión del modelo y combinación, e) comparación
entre la cobertura estimada por cada modelos y las medidas realizadas en el campo, y f) selección del modelo de mayor
precisión para la realización de una cartografía de la cobertura de la vegetación en el área de estudio.

La cobertura estimada por los diferentes modelos muestran una alta correlación (Coeficiente de correlación de
Spearman > 0.89), lo que ha permitido establecer una diferencia entre las medidas de cobertura a través de la imagen y las
estimación de campo que en ningún caso han superado el 6% de la cobertura post-inendio.

Palabras clave: factores de referencia, píxeles puros, Landsat 7 ETM+, restauración post-incendio, vegetación
mediterránea.
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Introduction

Fire, whether natural or man-made, has shaped most
Mediterranean ecosystems. Wildfires have diverse,
varying effects on the ecosystem depending on the
characteristics (physiographic, climatic, and biotic) of
the medium, the fire pattern (intensity, frequency, time
of year, fire type) and the weather conditions after the
fire. Accurate assessments of vegetation recovery in
burnt areas requires not only a qualitative analysis
(species, communities), but also the determination of
abundance (cover, Leaf Area Index, biomass).

The analysis of satellite images allows one to
monitor post fire vegetation cover. A number of authors
have sought a correlation between vegetation cover and
some index derived from the combination of the image
bands of a multi-spectral sensor, generally of the
Landsat or NOAA sensors (Viedma et al., 1997; Díaz
and Pons 1999). The most widely used index for
studying regeneration processes is the NDVI
(Normalised Difference Vegetation Index); some
authors, however, have obtained good results with an
index derived from TM4 and TM5 bands (Fiorella and
Ripple 1993) or TM4 and TM7 Landsat image bands
(Lopez and Caselles 1991). In the quantitative research
of vegetation in Mediterranean areas, where the
scattered type is abundant, the contribution of the soil
to the reflectivity of the pixel is essential, and this limits
the use of the traditional vegetation index (Mustard and
Sunshine 1999, McGwire et al., 2000).

Spectral Mixture Analysis (SMA) is a model based
on the linear mixing of two or more pure spectral
endmembers (Adams et al., 1986, Gillespie and Smith
1990, Adams et al., 1993, Roberts et al., 1997a; 2002).
These techniques assume that a pixel can be defined in
terms of the proportion of each pure component
(endmember) it is composed of and have some
advantages over the use of vegetation indexes,
especially prominent among which is the fact that the
fraction of endmember «vegetation» determined by
SMA is consistent with the green vegetation cover
projected (McGwire et al., 2000) and that the ratio
between both variables is linear and less sensitive to the
effect of soil than the NDVI is (Mustard et al., 2001,
Small 2001). SMA has become an essential tool for
remote sensing vegetation analysis. It has been used to
derive the fractional contributions of endmember
materials to image spectra in a wide variety of
applications as vegetation cover (Cross et al., 1991),

mapping land degradation (Metternicht and Fermont
1998; Haboudance et al., 2002), land cover change
(Elmore et al., 2000, Roberts et al., 1997a, 1997b,
2002, Rogan et al., 2002) and regeneration after
disturbance (Riaño et al., 2002) from images obtained
by using mostly multispectral and, to a lesser extent,
hyperspectral, sensors (Rambal et al., 1990, Adams et
al., 1993, Mustard et al., 2001). Knowledge of
biophysical variables (e.g. cover, biomass, Leaf Area
Index) is required (Fiorella and Ripple 1993). Recent
studies have shed some light on the relationship
between such variables and the cover estimate provided
by SMA in a specific situation (Small, 2002).

The main purpose of this work was to develop a
methodology for the mapping of post-fire vegetation
cover from Landsat ETM+ images by using Spectral
Mixture Analysis. Specifically, we examined various
endmember characterisation methods. Also, we
assessed the feasibility of applying them to
lithologically non-uniform areas.

Material and Methods

Study areas

Two different areas, both of which had been
devastated by wildfires in the past decade, were
studied, namely: Aznalcóllar and Beas de Granada
(Andalusia, South Spain) (Figure 1). The fire at
Aznalcóllar took place in 1995 and affected around
2500 ha. Natural vegetation before the fire consisted of
sclerophyllous evergreen wood dominated by stone
pine (Pinus pinea L.) and cork oak (Quercus suber L.).
At present, the area devastated by the fire is covered
mainly with rockrose (Cistus ladanifer L.) associated
with other shrub species (C. populifolius L., C.
salvifolius L., and Phillyrea angustifolia L.) at a
medium density. Shady places also exhibit cork oaks
(Quercus suber). The areas less markedly affected by
the fire, generally scattered, still contain spots of stone
pine (Pinus pinea) and, to a lesser extent, black pine (P.
pinaster Ait.), in variable density. The climate is
Mediterranean with hot summers. Mean annual
precipitation and temperature are approximately 650
mm and 12�C, respectively. Topography is comprised
of rolling hills and, lithologically, the area is fairly
uniform, with abundant slates, quartzite and Palaeozoic
schist.
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The fire at Beas de Granada took place in 1993 and

burnt almost 7000 ha covered mainly with black pine

woods and, to a lesser extent, oak woods (Quercus ilex

L. subsp. ballota (Desf.) Samp.), dwarf gorse (Ulex sp.,

Genista sp.) and pinewoods of Aleppo (Pinus

halepensis Mill.). The area devastated by the fire

exhibits spots covered with thickets of low-average

density, consisting of mainly dwarf gorse, rosemary

(Rosmarinus officinalis L.) and male rosemary (Cistus

clusii Dunal in DC), with occasional bushes of cork

oak. Areas covered with withering grassland are also

present where spots of regenerated black pine and

sizeable patches of Cistus laurifolius L. and

Adenocarpus decorticans Boiss. can be found. In the

areas less marked by the fire, wooded spots of black

pine still remain, although Aleppo pine and cork oaks

are also present. The climate is also Mediterranean

[with hot summer sobra?] with mean annual

precipitation and temperature of approximately 470

mm and 15�C, respectively. Topography is comprised

of steeper slopes and the area is lithologically

non-uniform; it comprises materials such as compact

carbonated stones, limestone and compact dolomites,

heavily fractured dolomites, phyllites and mica-schist.

Radiometric calibration

Two Landsat 7 ETM+ images taken on July 12 and

August 31, 2000 at Aznalcóllar and Beas de Granada,

respectively, were used for this work. Uncalibrated

image data were converted into atmospherically

corrected reflectance by using the image-based

atmospheric correction, the COST model, proposed by

Chavez (1996) and calibration parameters obtained

from Landsat 7 ETM+ sensor pre-launch calibration

data and the ETM+ data header (Irish, 1998).

The radiometrically calibrated images were

geo-rectified using ground control point and

high-resolution digital ortophoto quadraught (DOQ) of

the study area obtained from the Spain Geographically

Referenced Information Program. Root mean squared

(RMS) errors were held to less than one pixel in all

cells.
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Figure 1. Location of the study area.



Inherent dimensionality image
determination and endmember
characterisation

The linear SMA approach assumes that the spectrum
measured by a sensor is a linear combination of the
spectra of all components within the pixel (Adams,
et al., 1995; Roberts, et al., 1997a). To apply this
methodology the following conditions must be
satisfied: (1) selected endmembers should be
independent of each other, (2) the number of
endmembers should be less than or equal to the spectral
bands used, and (3) selected spectral bands should not
be highly correlated. It is well recognized that remotely
sensed data, such as visible bands in Landsat
TM/ETM+ data, are highly correlated between the
adjacent spectral wavebands (Barnsley, 1999), so that
several authors recommend using a maximum of 3 or 4
endmembers (García-Haro, 1996; Radeloff et al.,
1999). Several techniques have been used to transform
the data from highly correlated bands to an orthogonal
subset. Principal component analysis (PCA) and
minimum noise fraction (MNF) are the two most
common transformations (Green, et al., 1988; Jensen,
1996).

Previous studies have shown that the use of MNF
transform can improve the quality of fraction images
(van der Meer and Jong, 2000; Small, 2001; Wu and
Murray, 2003), and so it was used in this study in two
steps (ENVI, 2000): (1) de-correlation and rescaling of
the noise in the data based on an estimated noise
covariance matrix, producing transformed data in
which the noise has unit variance and no band-to-band
correlations; and (2) implementation of a standard PCA
of the noise-whitened data. The result of the MNF in
this study showed that the 3 primary bands in
Aznalcollar and the 4 primary bands in Beas contained
coherent eigenimages, so that a number of 3
endmembers was selected.

Endmember spectral characterisation is vital to SMA
(Tompkins et al., 1997) to take advantage of the latter’s
ability to provide a physically meaningful fraction. We
used two different endmember characterisation
methods to construct various models in order to
compare their results and select the most suitable one
for the purpose intended. The methods involved: (a)
Selecting pure pixels directly from the image on the
basis of the knowledge of the area (model 1) or (b)
selecting pure pixels from the images provided by the

Minimum Noise Fraction (MNF, Green et al., 1988)
and Pixel Purity Index (PPI, Boardman et al., 1995)
(models 2i) (Figure 2):

a) The first approach for characterising endmembers
has been to select representative homogeneous pixels
from satellite images on the basis of a set of reference
polygons defined using high-resolution digital ortophotos
quadraught (DOQ) of the study areas and field
dataPolygons were required to be at least 40 � 40 m in
size and dominated by a single land cover type (Dennison
and Roberts 2003). The endmembers characterised were
(1) soil and (2) vegetation.

Because the lithology in Beas de Granada was
non-uniform, we used various groups of pixels to
characterise three different soil endmembers in the area
that in turn led to the development of various models
that were subsequently combined into one upon
inversion. In model 1-A, the group of pixels
representing the «soil A» component was located in
areas of bare soil on fractured dolomites. In model 1-B,
the pixel group representing the «soil B» component
was located in areas of soil with grassland on compact
limestone. Finally, in model 1-C, the pixel group
representing the «soil C» component was located in
areas of field covered with parched grassland on schist
and mica-schist. The image included several areas with
quarries that were masked by setting appropriate
thresholds (specifically, those pixels with a reflectivity
of over 20%, 25% and 30% in bands 1, 2 and 3,
respectively, were eliminated).

In addition to the endmember vegetation and soil, we
also examined the endmember (3) shade, which was
artificially characterised by assigning it a reflectivity
value of 0 in all bands. The purpose of including this
component was to separate the shading effect of the
vegetation and that of the topography.

b) In the second approach we constructed the
n-dimensional view of the MNF image by including
only the pure pixels that exceeded a threshold value of
purity (a threshold PPI value) (McGwire et al., 2000,
Small, 2001, van der Meer et al., 2000, van der Meer
and Jong, 2000). The clusters of pixels with a high PPI
were used to characterise the endmembers. In this way,
various models were generated for each study area on
the basis of the PPI threshold considered.

Characterizing endmembers from MNF and PPI
images was relatively easy in the case of Aznalcóllar.
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The MNF images viewed using different PPI threshold

values exhibited three well-defined clusters of pure

pixels which, when overlapped with the initial Landsat

images, were associated with three land cover types (1)

soil, (2) vegetation, (3) shade. In order to determine the

optimal threshold, we used an iterative model,

involving the steps:

� Model 2-1: a low threshold for the PPI image was

used to bound pure pixels clusters (PPI � 1).

� Model 2-2: a high threshold for the PPI image

(PPI � 100) was used.

� Model 2-3: if the hypothesis that model 2-1

overestimated and model 2-2 underestimated cover

relative to field measurements was fulfilled, then a

threshold in between those of model 2-1 and model 2-2

(PPI � 50) (model 2-3) would be used.

The endmember characterisation from MNF and

PPI images proved rather complicated for the case

of Beas. The pure pixels in MNF images obtained

with a unity PPI threshold revealed the presence

of three clusters, one of which corresponded to areas

of low reflectivity (water-shade), and two to

vegetation areas (one with thick forest vegetation and

the other with riverbank vegetation and cultivation).

No well-defined pixel cluster for the soil endmember

was observed. However, there was a diffuse cloud

of pixels corresponding to areas of bare soil that

exhibited a disparate spectral behaviour. With a high

PPI threshold (PPI=100), the cluster corresponding

to thick forest vegetation disappeared and the pixels

corresponding to the soil continued to form a

diffuse cloud. We thus chose to use PPI=25 as a

high threshold and we followed a procedure similar

to the one for Aznalcóllar in order to characterise

the (1) soil and (2) vegetation endmembers, leaving

the characterisation of the different soils for a later

stage.

� Model 2-1: a low threshold for the PPI image was

used to bound clusters of pure pixels (PPI � 1).
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Figure 2. Methodology proposed: (model 1) Selecting pure pixels directly from the image on the
basis of the knowledge of the area or (models 2i) selecting pure pixels from the images provided by
the Minimum Noise Fraction and Pixel Purity Index.



% Model 2-2: a high PPI threshold (PPI ' 25) was
used.
% Model 2-3: if the hypothesis that models 2-1

and 2-2 over and underestimated, respectively, cover
relative to field measurements was fulfilled, then the
average threshold of models 2-1 and 2-2 (viz. PPI ' 13)
was used.

The above-described process allowed us to
characterise the endmember (2) vegetation and (2) shade,
but not (1) soil. In order to characterise «soil A», «soil B»
and «soil C» a new PPI image was generated, this time
from only those pixels with scant or zero vegetation (viz.
pixels with NDVI > 0.25 were eliminated). This pure
pixel image was superimposed over a 6, 3, 2 colour
composition of the LANDSAT image and on the soil map
of the area, and a group of pure pixels was selected to
represent each of the main «soil» types (but, choosing
only those pixels belonging to the PPI image. The three
types of endmember (1) soil examined were designated:
«fractured dolomites» (soil A), «compact limestone» (soil
B) and «schist and mica-schist» (soil C), which led to the
intermediate model: 2-1-A, 2-1-B and 2-1-C, their
combination gave model 2-1), 2-2-A, 2-2-B and 2-2-C
(which gave model 2-2), and 2-3-A, 2-3-B and 2-3-C
(which gave model 2-3).

Inversion, combination and post-processing

Once all endmembers to be used in each model had
been defined and spectrally characterised, they were
inverted to obtain the fractions of endmembers for each
pixel in the image. A partially restricted inversion
model was used for this purpose that involved the
adding equation of fractions equal to 1 (McGwire et al.,
2000, Mustard and Sunshine 1999).

The presence of a variety of soils in Beas de Granada
area led us to generate a different intermediate model
for each type of soil. Subsequently, they were
combined in such a way that the model best predicting
reflectivity was applied to each pixel. The criterion
used to combine these intermediate models was to
choose, for each pixel, the model with the lowest
RMSE (Garcia-Haro et al., 1996).

In order to assess and compare the proposed models,
we calculated the average RMSE, after inversion (after
inversion plus combination in the case of soil
diversity). Since the image portion used included areas
with surfaces irrelevant for the intended purpose (viz.

cultivated, urban areas, etc.), we calculated the RMSE,
taking into account only the area of interest (viz. the
one within the perimeter of the fire).

After eliminating negative and aerate-than-unity
fractions, as well as the shade fraction, the «soil» and
«vegetation» fractions were renormalized so that a
combination of the two equalled unity.

Field measurements

Different model estimations were validated by comparison
with field measurements. Measurements of post fire
vegetation cover were collected during the months of July
and August, 2000. Data were collected in 31 plots of land
at Aznalcóllar, and in 35 at Beas de Granada.

After post-processing of the developed models, their
estimates were validated by comparison with field
measurements. Measurements of post fire vegetation
cover were collected during the months of July and
August 2000. Data were collected in 31 plots of land at
Aznalcóllar, and in 35 at Beas de Granada. In each plot,
total vegetation cover, shrub cover (including herbaceous
cover an tree regeneration) and tree cover were measured
using the linear intersect method (Bohanm, 1998) by
establishing two normal transects 50 m long (one in the
direction of maximum slope) that intersected at the centre.
A global positioning system (GPS) was used to record
geographic co-ordinates for each transect centre.

In Aznalcóllar plots, total vegetation cover values
ranged between 39% y 95%, 17 plots corresponded
to shrub and scattered trees (tree cover <5%), 8 plots to
shrub with tree cover ' 5% and <25% and 6 plots
to shrub with tree cover ' 25%. The species more
abundant were Pinus pinea, Quercus suber, Cistus
ladanifer and Cistus populifolius. In Beas cover values
ranged between 12% and 87%, 30 plots corresponded
to shrub and scattered trees (tree cover <5%), 2 plots to
shrub and with tree cover ' 5% and <25% and 3 plots
to shrub with tree cover ' 25%. The species more
abundant were Pinus pinaster, Quercus ilex, Ulex spp.
and Rosmarinus officinalis.

Accuracy and mapping

Once vegetation transects were located on the
Landsat images, the cover measured in field was
assumed to represent the average of the 4 pixels in the 2
� 2 window that it? Included it?
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In order to assess the accuracy of the cover estimates
provided by the SMA models, we calculated the
average absolute difference between the estimated and
observed cover values for each model. Correlation
between these variables was quantified in terms of
Spearman’s correlation coefficient; also, significant
differences between means were defined using the
Wilcoxon test of paired samples. The use of
non-parametric statistic techniques on account of the
obvious lack of normality in the samples was chosen.
Also, residual plots of the models (cover measured in
field minus cover estimated by each model versus
cover estimated by each model) were visualised in
order to detect any relation between estimated cover
and residuals. The results obtained in these analyses
were used to select the model best estimating
vegetation cover in each study area.

Once the most suitable model was chosen, it sufficed
to reclassify cover measurements in order to obtain an
easier clearer final cartographic output. Water areas
were omitted from the final map by using a mask.

Results

Model accuracy and selection

The average RMSE for the four models applied to
the fire in Aznalcóllar ranged from 0.7 to 1.1%. In
Beas, the differences in RMSE upon inversion and
combination of the models were minimal: 0.6 and
0.7%. Thus, the models constructed for both fires
provided acceptable average RMSE values (generally
below the accepted 1%) (Table 1). When RSME images

of each model were visualised, the highest RSME
values corresponded to roads and firebreaks, so this
could indicate that the models work worse in edge areas
between bare soil and vegetation. In Beas, the models
presents also high RSME values in pixels that
corresponded to riverbank vegetation.

Table 1 shows the coefficients of correlation
between the cover measurement estimates provided by
the four proposed models and the field measurements.
As can be seen, all models exhibited a high positive
correlation with the field measurements, with very
similar coefficients ranging from 0.89 0.90 at
Aznalcóllar and from 0.90 to 0.95 at Beas. The average
absolute differences between estimated and field cover
values ranged from 6% (models 1, 2-2 and 2-3) to 11%
(model 2-1) for Aznalcóllar, and from 5 to 9% (5, 6, 7
and 9% with models 2-3, 1, 2-2 and 2-1, respectively)
for Beas (Figures 3a, 3b, 3c, 3d).

Regarding the presence of significant differences
between means, Wilcoxon’s test revealed that, with
both fires, models 1 and 2-3 provided good results for
our purpose, i.e., there were no significant differences
between the means for the field and modelled data;
models 2-1 and 2-2, however, resulted in significant
differences (Table 2). A comparison of estimated and
field cover values reveals that, for both fires, model
2-1 yielded rather overestimated vegetation values in
virtually all land plots (in more than half of the plots,
cover was overestimated by over 10%). Model 2-2
provided slightly improved, but still largely
underestimated results. Models 1 and 2-3 yielded
substantially improved results, the differences
between estimated and measured cover values found
ranging �10%. Respect to residual plots, no relation
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Table 1. Coefficients of correlation between the cover measurement estimates provided by the four proposed models and the
field measurements

Fire Variables Spearman R t(N–2) p-level RMSE1

Aznalcóllar Field-model 1 0,89 10,44 �0,01 0,007
Field-model 2-1 0,90 11,43 �0,01 0,008
Field-model 2-2 0,89 10,34 �0,01 0,011
Field- model 2-3 0,89 11,62 �0,01 0,009

Beas Field-model 1 0,94 15,26 �0,01 0,006
Field-model 2-1 0,91 12,50 �0,01 0,007
Field-model 2-2 0,94 15,68 �0,01 0,007
Field-model 2-3 0,95 17,58 �0,01 0,007

1 RMSE values of the models constructed for both fires.
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Figure 3. Correlation models between estimated and field cover for models 2-3, 1 (a), 2-1 (b), 2-2 (c) and 2-3 (d) for Beas.

Table 2. Wilcoxon’s test of means for the proposed models and the field measurements

Fire Variables T Z p-level

Aznalcóllar Field-model 1 161.00 1.70 0.09

Field-model 2-1 8.00 4.70 �0.01

Field-model 2-2 80.00 3.29 �0.01

Field-model 2-3 118.00 2.54 0.11

Beas Field-model 1 308.00 0.11 0.91

Field-model 2-1 42.00 4.47 �0.01

Field-model 2-2 79.00 3.86 �0.01

Field-model 2-3 259.00 0.92 0.36
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between residuals and estimated cover was detected

(Figure 4).

The next step towards the generation of the final

vegetation cover map mainly involved selecting the

best characterised model for each study area of the

above-described validation results.

The four models for Aznalcóllar exhibited a high

correlation with field measurements, so this parameter

by itself did not allow us to identify the best model.

In terms of an average absolute difference between

the estimated and field cover values, model 2-2

provided appreciably worse results (10%) than the

three other models (6%). This, together with the fact

that Wilcoxon’s test exposed significant differences for

this model between the mean, the estimated, and field

cover values, and the obvious underestimation of the

former, led us to reject this model. Model 2-1 was also

rejected. Although the average absolute difference

between estimated and field cover values was not

greater than with the other models, Wilcoxon’s test

revealed significant differences between both variables

and a clear tendency towards overestimation.

The next step was to choose the better model

between the remaining ones, viz. models 1 and 2-3. The

comparison of field measurements and estimates for

both models provided good results (high correlation,

6% average absolute difference, and non-significant

differences in Wilcoxon’s test). We therefore adopted

model 1 simply because its RMSE was slightly lower

(0.7%) than that for model 2-3 (1%)

The situation for Beas was similar to that for

Aznalcóllar. Thus, models 2-1 and 2-2 were rejected
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Figure 4. Residual plots for models 1 (a) and 2-3 (b) for Aznalcóllar, and model 1 (c) and 2-3 (d) for Beas.
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because, despite the high correlation between their
cover estimates and the field measurements, the
average absolute difference was greater than in the
other models, Wilcoxon’s test revealed significant
differences, and a tendency towards underestimation
and overestimation with models 2-2 and 2-1,
respectively, was clearly observed.

Likewise, it was difficult to choose between the
remaining models (models 1 and 2-1). Thus model 2-3
exhibited an average absolute difference between its
estimates and the field measurements, which was
slightly lower than inferior 1% (5 and 6%); on the other

hand, RMSE model 1 had a slightly lower 0.6% than
model 2-3 (0.7%). Such small differences led us to
conclude that either model would be acceptable.

Mapping

The selected SMA models were used to model the
Landsat images corresponding to the study areas
obtaining the post fire vegetation cover maps. Finally,
these cover maps were reclassified using four
vegetation cover intervals (Figures 5a, 5b).
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Figure 5. Vegetation cover maps reclassified using four vegetation cover intervals for Aznalcollar (a) and Beas (b).



Qualitatively, these maps are a good approximation of

post fire vegetation cover. The Aznalcollar fire was

dominated for draft. With a high fraction cover of

Cistus ladanifer as can be seen on the map. On the

other hand, Beas fire has a lesser vegetation cover due

to specific composition (Ulex and Genista sp.) and a

complex lithology.

Discussion

This study showed that detection of post fire

vegetation recovery with SMA is feasible. The results

presented here suggest that routine assessment of a

restoration process will be possible in the future with

existing space-borne multispectral imaging systems.

Imaging spectroscopy has provided detailed

information on vegetation damage and post fire

vegetation on the last decade (e.g. Riaño et al., 2002)

and this study demonstrated how such information can

be used to support local studies of land cover

restoration after wildfires.

The greatest difficulty in analysing spectral mixtures

is the accurate spectral characterisation of

endmembers. Several endmember selection methods

have been proposed for multiple endmember

techniques. These methods have concentrated on

finding the set of endmembers that best represents

spectral variation in materials in an image (Roberts et

al., 1997a; 1997b; Okin et al., 2001). In this work, we

compare the performance of two reported methods

based on: (a) the selection of pure pixels from the work

image (method 1) and (b) the characterisation of

end-members by generation of MNF and PPI images,

and their n-dimensional visualisation (method 2).

Selecting pure pixels directly on the image was

quick and easy, as a comprehensive knowledge of the

study areas was available that allowed us to visually

bound sufficiently wide and uniform areas, with a

total cover of field vegetation. Selecting pure pixels

through the generation of MNF and PPI images

proved more complex. Thus, when defining the

clusters characterising each end-member through

n-visualisation required the development of an iterative

model to overcome a problem previously encountered

by Small (2002). If endmembers are characterised on

the basis of more or less restrictive criteria, then the

spectral signature defined for each endmember can

differ markedly. As shown here, being too restrictive

(viz. visualising only those pixels in the MNF image

with a high value in the PPI images) results in

underestimated, vegetation cover values as one may

possibly be characterising the spectral response of the

forest vegetation on the basis of riverbank areas or

cultivation. Conversely, if the threshold PPI is too low,

then the assumed pure pixels may not correspond to

100% vegetation cover and lead to overestimated

vegetation cover values. To choose an appropriate PPI

threshold, it may suffice to check on the cover type to

which the work image corresponds. This call for a

comprehensive knowledge of the study area and, even

more so, the process defining a cluster may be highly

subjective. The iterative process proposed in this work

can be used when the knowledge of the area is

inadequate; in any case, it is much more objective, but

requires the use of a series of field plots for which,

in order? the actual cover is known to be able

to ascertain which PPI thresholds will result in

overestimated and which in underestimated values.

One added difficulty potentially arising in

characterising endmembers by n-visualisation of pure

pixels (PPI image) in the MNF image is the absence of

a cluster for every endmember to be included in the

model. Such was the case with Beas de Granada, where

the information in the PPI image had to be

supplemented with the knowledge about the area in

order to be able to characterise the soil endmembers.

These endmembers may model the Landsat image

and produce a vegetation cover map of an acceptable

accuracy, although both methods for the selection of

pure pixels have some limitations and, above all, are to

some extent subjective. Using both in parallel and

selecting one on the basis of validation with field

measurements is no doubt the best choice.

The methodology applied to Beas in order to

consider its lithological non-uniformity, allowed us to

obtain vegetation cover estimates as accurate as those

for Aznalcóllar and using a single soil endmember.

In both study areas, the average absolute difference

between the estimated vegetation cover and field

vegetation cover values never exceeded 6%; also, the

correlation between both variables exceeded 0.89.

These results are similar to those obtained by other

authors in the estimation of vegetation cover using

Spectral Mixture Analysis of Landsat images. Thus,

Maas (2000) estimated the cover of cotton fields with

an average absolute difference of under 7%, and

Mustard and Sunshine (1999) obtained an average
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difference between estimates and measurements of
forest vegetation cover of under 3% and a correlation
coefficient of 0.88.

The models have been validated with field plots
that included a range of total vegetation cover between
12% a 95%and a range of tree cover (Pinus pinaster,
P. halepensis, P. pinea, Quercus suber, Q. ilex) between
0% and 86%. The results obtained in this work confirm
the potential of the Spectral Mixture Analysis not only
for estimating the post-fire vegetation cover, but also
for estimating vegetation cover of Mediterranean
bushes and trees (Pinus spp. and Quercus spp.). The
models developed worked worse in limit areas between
vegetation and bare soils like roads, paths and fire lines
and in areas with riverbank vegetation.

The vegetation cover map obtained provides reliable
information that can be used as the starting point for
other studies dealing with the evolution of vegetation
after a wildfire, and for the modelling of erosive
processes. However, regarding the latter type of study,
it would be of great interest to distinguish
differentiating wooded cover from thicket cover.
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