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Abstract

Stem analysis data from 536 sampled trees located in 36 permanent sample plots were used to develop a taper function
which allows flexible end products volume estimation for stone pine (Pinus pinea L.) in Spain. To alleviate inference
problems derived from high correlation among observations a multilevel linear mixed approach, including random
coefficients varying at both plot and tree levels, was used. The proposed taper function expresses the section diameter as a
function of breast height diameter and relative height of the section, showing a logical behaviour at both breast and total
height. Between and within plot stem form variability was explained by including explanatory covariates as basal area or
distance independent competition indices.

Mixed models allow calibration of the model for new locations, by predicting random coefficients if additional stem
form measurements are available. Several alternatives of calibration, considering section diameters measured at different
heights in a variable number of trees per plot, were compared between them, and with the basic marginal model and
the marginal model including covariates. The best calibration alternative was to use additional section diameter
measurements taken at 0.5 m height above ground. This model results in substantial improvement in stem form and single
tree volume predictive ability over previously existing volume functions for the species, allowing size end-use
classification for timber products.
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Resumen

Variabilidad a nivel de parcela y de árbol de la forma de fuste y del volumen individual en Pinus pinea L.: una
aproximación multinivel con componentes aleatorios

En el presente trabajo se han utilizado los datos del análisis de perfil de 536 árboles tipo de la especie Pinus pinea L,
procedentes de 36 parcelas de experimentación, para desarrollar una función de perfil para la especie que permita la
estimación de volúmenes individuales y una clasificación flexible de productos maderables de acuerdo a las dimensiones
del fuste. Para reducir los problemas de inferencia estadística asociados con la alta correlación identificada entre las
observaciones se ha propuesto la formulación de la función de perfil como un modelo mixto lineal multinivel, incluyendo
parámetros aleatorios al nivel de árbol y parcela. La función de perfil desarrollada define el diámetro de la sección en
función del diámetro normal y la altura relativa de la sección, y presenta comportamiento lógico en la predicción de
diámetro a las alturas normal y total. La variabilidad sistemática en la forma del árbol identificada entre parcelas y entre
árboles dentro de una misma parcela queda explicada mediante la inclusión de covariables tales como el área basimétrica
o índices de competencia.

Los modelos mixtos permiten calibrar la función de perfil para nuevas localizaciones, al predecir los parámetros
aleatorios a partir de un número reducido de mediciones adicionales de la forma de fuste. De entre las distintas
alternativas de predicción evaluadas, se considera que la mejor es la calibración utilizando valores del diámetro de sección
medido a 0.5 m en nuevos árboles. Este modelo supone una mejora en la predicción de la forma de tronco y del volumen
individual respecto de las ecuaciones de cubicación desarrolladas con anterioridad para la especie en España.

Palabras clave: función de perfil; parámetros aleatorios; calibración; modelos multinivel; Pinus pinea.
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Introduction

Volume tables and equations, which estimate the
volume for a single tree as a function of diameter at
breast height and total height, have been traditionally
used to calculate total stand volume. More recently,
it has been deemed neccessary to make accurate
estimations of the partial volume of different portions
of the log. The reasons for this are:

— To estimate the volume of available timber
of different sizes and qualities in order to determine
the possible end-uses for a single log i.e. saw, pulp,
plywood (Amidon, 1984; Reed and Green, 1984; Prieto
and Tolosana, 1991)

— To determine the accumulated biomass and the
period for fixed CO2 to be returned to the atmosphere
for each fraction of the tree, as the size of the portion
will influence its end use (Montero et al., 2002).

— To determine the effect of stand variables, tree
characteristics and silvicultural treatments on volume
for the different product classes (Prieto and Tolosana,
1991; Muhairwe et al., 1994; Tassisa and Burkhart,
1998)

Taper or stem profile functions provide an
interesting approach to volume estimation for the
different merchantable portions of a tree (Kozak et al.,
1969). A taper function relates the diameter at any point
on the stem to the height at this point. By integrating
the taper function between two given heights it is
possible to estimate the total volume contained in that
portion of stem, therefore allowing a flexible size
classification for the products.

The data used to fit taper functions usually come
from sample trees, for which diameter over bark is
measured at different heights along the stem.
Measurements from the same sample tree tend to be
highly correlated (Bruce et al., 1968; Amidon, 1984;
Gregoire and Schabenberger, 1996). If different trees
are sampled in the same stand, the similarity of the
measurements between those trees would be above
the average. This lack of independence of the data, on
a two-level scale (observation within trees and trees
within plots) prevents the use of statistical methods
based on ordinary least squares (OLS) techniques
(West et al., 1984; Fox et al., 2001), since these
techniques would lead to bias in the estimation of the
confidence intervals for the parameters.

Mixed models, including both fixed parameters
common for the whole population and random
parameters specific for each sampling level and unit,
approach the problem of correlation among
observations (Laird and Ware, 1982; Searle et al., 1992;
Vonesh and Chinchilli, 1997). A subjacent idea on
mixed models is that the relation between two
variables, in taper function diameter and height at a
point along the stem, can be explained using a common
functional structure with specific parameters for each
location or ocasion. This idea is supported by the
general opinion that stem form varies from stand to
stand (Laasasenaho, 1982; Lappi, 1991; Gregoire and
Schabenberger, 1996) and that within the same stand,
stem form varies from tree to tree (Kilkki, 1983;
Tassisa and Burkhart, 1998; Eerikäinen, 2001). The
systematic pattern of variability in stem form between
trees located in different plots can be explained by
including stand variables in the taper function
(Thomson and Baarclay, 1984; Lappi, 1990; Muhairwe
et al., 1994). Form variability within the same plot can
be explained by adding single tree variables or
variables indicating social status of the tree (Kilkki,
1983; Kozak, 1988; Newnham, 1992; Valentine and
Gregoire, 2001).

The Stone pine (Pinus pinea L.) is a typical
Mediterranean species. In Spain, in both pure and
mixed stands, it occupies about 450.000 ha, which is
more than the 50% of the total surface of this species in
the world. Stone pine stands play an important role in
landscaping and are often found in social and
recreational areas. They are also soil protectors, since
they occupy sandy areas both inland and in coastal
regions. The two most important merchantable
products from these stands are pinyons (edible pine
nuts) and timber. The volume of stone pine timber
harvested in Spain during 1998 was 203,698 m3

(MAPA, 2001). This amount is only a small part of the
total volume of timber harvested annually in Spain
[15,096,500 m3/yearbetween 1989 and 1998 (MAPA,
2001)]. However, its importance is evident because it is
the only timber producing species in many areas. The
end-uses for stone pine timber include: saw wood for
construction, packing, pallets, pulpwood for chipboard
and paper manufacture.

Several volume equations are available for the stone
pine in Spain which have national (Pita, 1967;
Martínez-Millán et al., 1993) or regional (ICONA,
1990) validity. These equations have been developed
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to estimate single tree volume from breast height
diameter, total height and a form factor or a
complementary upper diameter measurement. These
equations do not take into account the influence of
stand, tree or silvicultural effects, and they do not
enable product classification.

The aim of this work is to develop a flexible taper
function with logical behaviour for tree volume
estimation which allows flexible end-product
classification for stone pine in Spain. To avoid
inference difficulties derived from high correlation
among observations taken on sample trees, the
proposed taper function is formulated as a multilevel
mixed model, including random coefficients at both
tree and stand level. The ability of different stand or
tree level covariates to explain variability in stem
form was also evaluated, and compared with local
calibration of the models by using additional
measurements in new locations.

Material

During the sixties the CIFOR-INIA installed a
network of permanent plots to study growth and yield
for the most important forest species in Spain. From
each plot, fifteen sample trees were randomly selected,
and breast height diameter, total height and
merchantable height to a top diameter of 7 cm for each
tree were recorded. Measurements for diameter over
bark were taken at stump height, at 0.5 meters, and then
at every meter up to a height of 10 meters. From 10
meters up to the merchantable height, measurements
were taken at every two meters. Trees were not felled,
as measurements were taken by workers who climbed
the trees.

For Pinus pinea, 36 permanent plots were installed
in three different regions: West Andalusia, Central
Range and Northern Plateau. Taper measurements
were recorded during the second inventory (year
1971). The total number of trees available for fitting
the data set, as well as their regional distribution and
main characteristics are shown in table 1.

Bias in the data set was detected, stemming from the
fact that for two trees with the same diameter and
height, the 7 cm section diameter can be measured at
different relative heights (depending on the tapering of
the stem), indicating that measurements taken on the
upper part of the stem (higher relative height sections)
are all from the less tapered trees. To avoid this, trees
were classified into classes per 2 cm breast height
diameter and 1 meter total height. In each class, all the
observations coming from a section whose height is
equal to or higher than the smallest merchantable
height for the class were rejected (figure 1). The total
number of available observations after data depuration
was 4365.

Methods

Taper function

Since Kozak et al. presented their seminal work
(1969), a wide range of taper function equations have
been developed to predict stem form. These include
polynomial, segmented polynomial, exponential,
variable exponent, potential or trigonometric equations
(see Castedo and Álvarez, 2000 or Novo et al., 2003 for
complete recent revisions on taper functions). Despite
all these advances, today it is difficult to identify a
single taper function or family of taper functions which
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Table 1. Fitting data set summary

Region
Number
of plots

Number
of trees

dbh (mm) H (dm) V (dm3)

Mean min-max Mean min-max Mean min-max

West Andalusia 18 270 216 72-452 122 36-248 232.5 8-1978
Central Range 4 60 210 96-294 81 34-123 140.5 21-378

Northern Plateau 14 206 268 90-421 105 42-178 270.2 13-1046

Where dbh is breast heigth diameter, H is total height and V is tree volume.



present a clear advantage over the rest. Therefore, new
taper models are continuously being developed. In the
present work, we propose to modify Amidon's classical
polynomial taper function (1984). The expression for
original model is shown in Eq. 1:

(1)

Where dub is the section diameter under bark at
height h; dbh is breast height (13 dm) diameter, and H
is total height for the tree. Henceforth, heights are given
in dm and diameters in mm. This function presents
several advantanges, such as its simple formulation to
directly predict section diameter, its linear character
without transformation, its logical behaviour at total
height H (where predicted section diameter d is zero);
as well as the possibility for direct integration between
two given heights in order to estimate bole volume
without bark.

The first restriction found when using this
expression arises because we are working with section
diameters over bark. This means that if we want a

function with a logical behaviour, we have to include
an additional constraint, since predicted section
diameter d over bark at breast height 13 dm should
equal breast height diameter dbh. Most of the available
taper functions do not match this condition. Despite
this fact, in an OLS regression context, it is always
possible to include some restriction in parameter
estimates (generally to identify a parameter as a linear
combination of the rest) leading to logical behaviour, or
simply to consider that unbiased prediction errors for
breast height diameter only slightly affect taper and
volume estimations.

In a random coefficient approach things are not
so simple, since parameters are not fixed, but rather,
mixed (composed of a fixed and a random part), so it is
not possible to find a single combination of parameters
giving null (or at least low) errors for breast height
section. As a result, errors in predicting diameter at
breast height will be biased and highly correlated
between observations coming from the same plot (since
they will share common random plot-level parameters).
Trivial correlations would also be identified between
random plot and tree parameters. To alleviate this, as a
first step we propose a modification of Eq. 1:

(2)

Where d is the section diameter over bark at height h,
the rest as in Eq. 1; subindexes ijk indicate kth section
from jth tree growing in the ith plot. By removing
parameter a1 from Eq. 1, the taper function now shows
a logical behaviour at both h = 13 and h = H. Equation 2
has a single parameter a1, affecting the continous term
Bijk, whose value is zero at h = 13 dm and h = H, and
larger than zero for the rest of the points within the
interval. Bijk has a maximum at section height hmax,
depending on total height H. Consequently, between
13 and H, for any h < hmax it is possible to find another
h' > hmax where the value for Bijk would be the same.
This means that the stem equation is not flexible, since
predicted section diameters at h and h' always deviate
by the same quantity from the value given by term Aijk,
in other words, both predictions are not independent.
Together with this, term Bijk for h is always negative
below 13 and positive for la above 13. This means
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Figure 1. Bias derived from the difference in relative
height for the 7 cm section diameter for three trees with the
same breast height diameter (dbh) and total height (H).
Observations taken above q' are rejected.
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that, irrespective of the sign of a1, when using
Eq. 2, deviations from Aijk are always of the same sign if
h < 13, and of the contrary sign if h > 13, which again
leads to high correlation between estimates. To deal
with all these limitations, we changed exponents ‘2’ in
term Bijk and an additional term Cijk was included in the
model.:

In order to maintain the linear character of the
model, terms � and � in the equation were fixed
heuristically, by comparing different sets of values �

and � in terms of log-likelihood. The best result was
obtained considering � = 1.5 and � = 4. The proposed
taper function shows similar functional structure and
characteristics to the Farrar (1987) or Bennet and
Swindel models (1972).

Multilevel linear mixed modelling

To avoid the problems derived from high correlation
among observations obtained in the same tree and plot,
a multilevel linear mixed model approach (Hox, 1995)
was proposed. Equation (3) was formulated as a
multilevel random coefficient model, dividing each
parameter (a1, a2) into a fixed part (�1, �2) common for
the population, and two random components, one
specific to each sampled plot i (u1i, u2i; with i = 1 to 36)
and the other specific to each sampled tree j within plot
i (v1ij, v2ij; with j = 1 to 15). The basic expression for the
multilevel mixed model is given by:
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It is possible to write the multilevel mixed model as:
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Where yijk is the scalar diameter d for the kth section
in the jth tree from the ith plot; xijk is a vector of predictor
covariates associated with fixed parameters; � is a
vector for fixed parameters; zijk is a vector of covariates
associated with random effects at plot and tree
within-plot level; ui is vector of random parameters
operating at plot level, specific for plot i; vij is the
vector of random parameters operating at tree level,
specific for the jth tree within the ith plot; and eijk is a
random error term. The basic assumptions for the
multilevel mixed model theory using maximum
likelihood estimation methods include the multivariate
normal distribution for random effects at each level and
for the residual error term:

Where Di and Dij are variance-covariance matrices
for random plot and tree components, defining random
variability at plot and tree level, respectively. In this
work, we consider that Di and Dij are constant for every
plot and tree within the analysed plot, indicating that
patterns of correlation between trees within the same
plot and between observations within the same tree are
constant. Random components acting at different units
within the same level (e.g. random parameters specific
for different plots) or acting at different levels (e.g.
random plot and tree parameters) were considered
independent. Model 5 can be rearranged in matricial
form to obtain the classical expression for a mixed
model (Henderson et al., 1959; Searle, 1971):

y = X� + Zb + e (6)

Where y is the vector including all the section
diameters dijk in the sample (in our case, a 4365 � 1
vector); X is a matrix for fixed effects, whose rows
are vectors xijk; Z is a design matrix for random
parameters:
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b is a vector for random parameters, including components at tree and plot level

and e is a vector for residual error terms.
Vector b is distributed following a multivariate normal with mean zero and variance-covariance matrix D,
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Vector e is distributed following a multivariate
normal distribution with mean zero and variance matrix
R. Given this, the first and second moments for the
distribution of y are:

E (y) = X� (7)

Var (y) = V = ZDZT + R

The usual aim of an analysis of this type is the
estimation of the vector of fixed effects �, the estimation
of the components of the variance-covariance matrices
D and R and the prediction of the vector of random
effects b. From (7) we can make inference over these
parameters using maximum likelihood estimates from
the General Linear Theory (Searle, 1971; Laird and
Ware, 1982):
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T T
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Components of D and R (variance components) are
generally unknown, but inference can be based on
estimates over these matrices (Henderson et al., 1959;
Harville, 1977; Searle et al., 1992). Inference over
these elements is associated with the maximization of
the density function for y, under multivariate normality
assumption. To include the loss in degrees of freedom
derived from the estimation of the parameters for the
fixed effects, the function to be maximized is the
marginal restricted likelihood function (REML)
(Harville, 1977). Estimation of the variance
components was carried out using SAS procedure
MIXED (Singer, 1998; Sheu and Suzuki, 2001). Output
from this software includes estimates over the variance
components, an estimate for the fixed effects vector �
and prediction for the vector of empirical best linear
unbiased predictors (EBLUP's) for the random effects
vector b.

Goodness of fit criteria tests

Akaike's Information Criterion (AIC) has been
widely used to compare different mixed models:

AIC = –2LL + 2q

Where –2LL is –2 times the value for the logarithm of
the likelihood function and q is the number of variance
components and fixed parameters to be estimated.
Smaller values of AIC indicate better data fit.
Comparisons between models including different sets of
nested fixed effects were also carried out using likelihood
ratio test over the value of –2LL. Modelling efficiency for
the fixed part of the model was also used in comparing
models including different subsets of fixed parameters.

Within tree variance-covariance structure

The R matrix explains variability between
observations at within tree level. It is usually a diagonal
matrix with components � e

2. In a first step, we propose
to consider this structure to fit equation (4). This simple
structure might not be accepted if residuals from the
same tree are not independent at tree-level or if residual
variance is not constant (heteroscedasticity).

Lack of independence means that residuals
from adjacent observations located in the stem show
an above average similarity between them.
Heteroscedasticity indicates that accuracy depends on
the part of the stem where prediction is carried out. In
our case, correlation among residuals from the same tree
was tested by plotting the residual against residuals from
the observation located just below it on the stem. On the
other hand, heteroscedasticity was tested by computing
the mean value for the residual variance (using residuals
from model 4) for different classes of relative height.
The patterns of heterocedasticity or correlation detected
would be considered in the model through variance
function and special structures for matrix R.



Results

Fitting basic multilevel linear mixed model

The first column in table 2 shows the fitting statistics
for equation 4 considering independence between
residuals and homocedastic residual variance. High,
significant positive correlation (p < 0.001) was identified
between residuals delayed one, two or even more
positions within the stem. Therefore, we evaluated
different correlation structures for matrix R (Gregoire,
1987), selecting a power type one, where correlation
between two sections k1 and k2 from the same tree is
defined by �d12, where d12 indicates the distance (in dm)
between sections k1 and k2, and � is the power parameter
(� < 1). The second column in table 2 shows fitting
statistics for equation 4 after considering this
autocorrelative structure. The large decrease on the –2LL
statistic indicates that this structure is a significant
improvement on the previous model.

Figure 2 shows a clear pattern of increasing residual
variance with greater relative height, indicating that
predictions are less accurate for the upper part of the

stem. A cubic function for residual variance �ijk was
then fitted using OLS linear regression:

After considering the correlation structure and
heterocedastic pattern, the within-tree residual
variance-covariance matrix is given by:

R = � e
2’ G1/2  G1/2 (9)

Where � e
2’ is the variance for the homocedastic and

independent residuals, acting as a scaling factor for the
error dispersion (Davidian and Giltinan, 1993; Gregoire et
al., 1995); G is a diagonal matrix, with dimension equal to
the number of observations, whose components are given
by the predicted variance function �ijk specific for each
observation, and  is a matrix describing the correlation
pattern between observations coming from the same tree,
with values 1 in diagonal and �d12 for the rest of
components.
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Table 2. Fixed parameters, variance components estimates and fitting statistics comparison between different alternatives of
weighting, stand and tree covariates inclusion. Model 6 shows results for OLS fitting of the model without covariates

1 2 3 4 5 6

�1 1.0972 1.1228 1.1924 1.2121 0.3900 1.3339
�2 –2.8505 –2.3500 –2.4463 –1.2312 –1.1817 –2.6938

Basal Area (!2) — — — –0.0458 –0.0466 —
d/dg (!1) — — — — 0.8034 —

�u1
2 0.4943 0.3774 0.3707 0.3566 0.3697 —

�u2
2 2.8505 2.2945 2.2413 1.6042 1.6298 —

�u12 –1.0724 –0.8316 –0.7912 –0.6884 –0.7018 —
�v1

2 0.1436 0.0818 0.041 0.0408 0.0269 —
�v2

2 –0.2582 0.1338* — — — —
�v12 0.6238 –0.1232 — — — —

Weighting factor 1 1 �ijk �ijk �ijk —
Power function � — 0.8891 0.9094 0.9097 0.9103 —

�e
2' 161.16 190.98 1.1121 1.1130 1.1164 267.04

–2LL 35405 35031 34142 34129 34083 36785
AIC 35418 35047 34154 34141 34095 36787
EF% 95.39 95.44 95.59 95.76 95.83 95.70

Where EF: modelling efficiency for the marginal (fixed effects only) model, rest of parameters as pointed out in the text. All the parameters
associated with both fixed and random effects are significant at � = 0.05 except the one indicated with *.
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Equation (4), under variance-covariance
assumptions defined in (9), was fitted to the data set
using SAS procedure MIXED. Variance components
associated with �2 at tree level (� v2

2 and �v12) were
identified as nonsignificant, and so random parameter
v2ij was removed from equation 4. Results for the
parameter estimates and goodness of fit statistics are
included in the third column of table 4. Comparing the
value for the remanent variance components acting at
plot and tree level it is possible to affirm that the pattern
of variability in stem form identified between trees
located in different plots is greater than that identified
between trees within the same plot.

Volume estimation

The proposed taper function (4) can be directly
integrated between two given section heights to obtain
bole volume, since the value for a given squared section
diameter dijk

2 can be expressed as a polynomial form
over section height hijk. Despite this, integration
involves high-order terms, so the volume expression
becomes quite complex. To avoid this, it is prefereable
to estimate volume by numerical integration of the
function, directly estimating the section diameter and
area at constant height intervals along the stem (for
example, 5 cm), and computing the volume attained
between those height intervals using Smalian’s formula
(Prodan et al., 1997). Total tree volume is then
computed as the sum of those partial volumes, always
taking into account that Smalian's formula tends to
overstimate volume predictions.

To determine saw timber volume within a given tree,
it is necessary to estimate the height at which the tree
reaches the minimum diameter for sawing. As hijk can
not be rearranged from equation (4) interpolation
techniques are then required to estimate limit heights
and size classification of products (as stated, e.g., in
Kozak, 1988). A simpler approach on a given tree, is to
simulate its division into different logs of commercial
length, then estimate the diameter for the upper and
lower sections of the log, and assign the end use of the
log depending on the upper diameter.

Improving the model

The proposed model can be useful to predict stem
form and volume for a given tree, if both breast height
diameter and total height of the tree are available. If no
additional data are available, predictions will be carried
out considering only the fixed part of the model, i.e.,
considering vectors ui and vij as null vectors, or, what is
the same, considering random parameters at plot and
tree levels to be zero. Under these conditions, we will
obtain marginal prediction, obtaining the same stem
form and volume for every tree having the same breast
height diameter and total height.

The inclusion of random components at plot and tree
level indicates that a pattern of systematic non-explained
variability exists, associated with observations coming
from those levels, in other words, that trees with the
same size do not necessarily share the same stem form
and volume. Due to the stochastic structure of the model,
random variability can be explained (at least in part)
using two different approaches:

Covariate modelling

Systematic variability in stem form detected
between and within plots can be explained in the first
place by including both stand and single tree variables
characterizing these factors as fixed effects in the
model (Muhairwe et al., 1994).

To determine which variables to include in the
model, first, the predicted EBLUP’s after fitting model
4 were linearly expanded over plot and tree variables
(Laird and Ware, 1982). The plot variables tested were:
age, dominant height Ho, basal area BA, mean square
diameter dg, number of stems/ha N and site index SI
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Figure 2. Values for the mean residual variance as a
function of relative height (dots), and fitted variance function
(solid line).
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(obtained from the model by Calama et al., 2003),
as well as its logarithmic transformations. Tree level
EBLUP’s were expanded over variables indicating
the status of the tree within the stand: ratio between
tree breast height diameter and plot mean square
diameter dbh/dg, ratio between tree section and plot
basal area g/BA and basal area of the trees larger than
subject tree BAL. Those covariates showing high
correlation with EBLUP’s (figure 3) were then
included into the basic model as fixed effects in
equation (4), evaluating different alternatives of
covariate inclusion on the basis of AIC. No significant

correlation was detected between any covariate and the
random component u1i.

The fourth and fifth columns in table 2 show the
fitting statistics, fixed parameters and variance
components for the model showing best performance
after including plot and tree covariates in the basic
multilevel mixed model. The expanded models indicate
a significant decrease in the –2LL statistic and in the
value for the variance components acting at plot and
tree levels, together with an increment in the efficiency
for the fixed part of the model. The taper function
finally proposed is shown in eq. 10:
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(10)

The complete model (10) can be used to predict stem
form and volume in a similar way to that in which the
basic model was used, by giving zero value to ui and vij,
defining the marginal covariate prediction. Covariate
modelling allows us to obtain different stem form and
volume estimates for trees which, having the same
breast height diameter and total height, grow in
different conditions (Fig. 4).

Calibration

The stochastic character of model 4 allows us to
improve the predictions for new unsampled locations
by predicting random components specific to those
locations. If complementary measurements of stem
form are available, together with breast height diameter
and total height, EBLUP’s for random plot and tree
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Figure 3. Relation between EBLUP's u2i (left) and v1ij (right) with basal area and dbh/dg.
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parameters can then be predicted. In this case, the
model is calibrated for each sampling unit (Bondeson,
1990; Lappi, 1991; Vonesh and Chinchilli, 1997). For a
new, additional observation, the vector of random
parameters �b can be predicted using eq. (11):

� � ( � � ) ( � )b DZ ZDZ R y XT T� � ��1 � (11)

Where y – X�� shows the differences between
additional observed section diameters and the marginal
prediction for these observations; X, Z are design
matrices associated with the new set of observations; �D
and �R are predicted variance matrices associated with
the new observations. Predictions carried out by using
model 4 after including predicted EBLUP’s for �b are
defined as conditional calibrated predictions.

Case study of calibration

The following is a simple case of calibration by way
of explanation:

If we take tree no. 5 from plot 47023, with a dbh
equal to 370 mm and total height of 164 dm, by
using the fixed part of eq. (4), it is possible to
obtain a marginal prediction for stem form and
compare it with real known data. Along with this
data, if we know that there is a tree (no. 67) within
the same plot which has a dbh of 381 mm, total
height of 168 dm, and a section diameter
measurement at height 45 dm of 341.5 mm, it is
possible to predict EBLUP’s for random plot
parameters u1,47023 u2,47023 using this latter observation
and eq. 11, where, in this case:
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Figure 4. Tree profiles from eq. 10 for dbh = 290 mm and H = 145 dm a) at different basal area (left) and b) in stands with BA =
20 m2/ha, with different social status (right).
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After solving eq. 11 we obtain:

� . ; � ., ,u u1 47023 2 470230 4127 01684� � �

We include these predicted values in eq (4) in order
to estimate stem form and volume for tree no. 5.
Random tree component �

, ,v1 47023 67 is of no use in
calibrating stem form function for tree no. 5, since it
has been predicted and defined for tree no. 67. As can
be seen in figure 5, calibration reduces both deviation
in section diameter and tree volume estimation.

Comparing the predictive ability of the
models

Marginal prediction (obtained using the fixed part of
eq. 4), marginal covariate prediction (from the fixed
part of eq. 10) and conditional calibrated prediction
were compared over a subsample of the fitting data set,
as an independent validation data set was not available.
Only those plots where a diameter measurement was

available at 45 dm for all sample trees were selected
(fifteen in all). The evaluation set was made up of 225
trees from the 15 plots. We compared different
calibration alternatives at plot level, by predicting
random plot components using the following additional
measurements

— Calibration after measuring section diameter at
45 dm height in 1, 2, 3, 4 or 5 trees per plot.

— Calibration after measuring section diameter at 5
dm height in 1, 2, 3, 4 or 5 trees per plot.

For each calibration alternative and sample size we
carried out 500 random realizations. In each
realization, trees measured in each plot to predict
random components were randomly selected, and
predictions were made for the fifteen trees in the plot.
Alternatives were compared using the average value
(for the 500 realizations) of the root mean squared error
(RMSE) and mean error (Bias) for section diameter and
tree volume estimates:

Where y and �y indicate observed and predicted
values for dependent variable (section diameter or tree
volume) and n number of observations. The results on
the predictive ability of the different alternatives are
included in table 3.

As can be seen from table 3, the RMSE for section
diameter estimates are not improved after calibration,
but bias in section diameter prediction is reduced. In
comparing different calibration alternatives, less
accurate but less biased predictions are obtained by
using additional measurements at 5 dm height. In any
case, RMSE for section diameter predictions is
between 17 - 18 mm, with a mean error for diameter
prediction of between 4.2 mm for the basic fixed effects
model and 0.9 mm for the calibrated model using five 5
dm measurements. Bias in diameter predictions is
nonsignificant (p > 0.01) only after calibrating with
five 5 dm additional measurements.
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Figure 5. Comparison between observed stem form for tree
no. 5, plot 47023 and predicted stem forms using marginal
prediction and calibration from an additional observation at
45 dm height (dashed line) taken on a different tree within
the plot.
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With respect to volume predictions, calibration
substantially reduces RMSE and bias if compared with
marginal models. RMSE for both calibration
alternatives are similar, but in using additional
observations measured at 5 dm, tree volume predictions
are less biased. RMSE for volume prediction ranges
from 47 dm3 for the marginal basic multilevel model to
45 dm3 for the marginal covariate model, while
calibration alternatives lead to RMSE values under 41
dm3. The mean prediction error ranges from 18 dm3 for
the marginal covariate model to values under 10 dm3

for 5 dm calibration alternatives. Marginal predictions
tend to underestimate both section diameter and tree
volume, while calibration alternatives tend to give
more unbiased estimates, especially if additional
measurements are taken at 5 dm.

Marginal and calibrated predictions (in the latter
case, only using additional measurements from two
trees per plot) were also compared by evaluating the
trend of the RMSE (average after 500 random
realizations in the case of calibrated models) for
relative diameter error (12) and relative volume error
(13) as a function of relative height (h/H) and total tree
volume. To do this, trees from the validation data set
were divided into 100 dm3 volume classes, and sections
were grouped in 10% relative height classes according
to their position on the stem. The use of relative errors

avoids the effect of considering jointly trees and
sections of different sizes.

(12)

(13)

RMSE for relative error in section diameter
prediction is under 10% up to a relative height of 0.6.
From this point to the tip RMSE increases up to 25%
(Fig. 6a), indicating less accurate predictions in the
upper part of the stem. Slight diferences are shown
between marginal and calibrated predictions, although
calibration using two measurements at 5 dm height per
plot leads to larger RMSE values, close to 30%, in
relative height over 0.8. With respect to volume
prediction (Fig. 6b), RMSE for prediction is under 10%
for all volume classes, with calibrated alternatives
reaching smaller values only in the largest volume
classes (>900 dm3).

Bias in marginal and marginal covariate predictions
was analysed by evaluating the mean value of real
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Table 3. Comparison between the stem form predictive ability for the marginal model, the marginal covariate model and
different alternatives of plot calibration

Number of
calibrating trees

per plot

RMSE (d)
mm

Bias (d)
mm

RMSE (V)
dm3

Bias (V)
dm3

MARGINAL 0 17.1 3.7 46.6 15.4

MARGINAL + COVARIATE 0 16.8 4.2 44.7 17.7

CALIBRATION ADDITIONAL
MEASUREMENT AT 45 dm

1 17.4 3.2 44.3 13.4
2 17.2 3.0 42.7 12.5
3 17.1 2.8 41.7 11.8
4 17.0 2.7 41.0 11.5
5 16.9 2.7 40.6 11.3

CALIBRATION ADDITIONAL
MEASUREMENT AT 5 dm

1 17.1 2.8 44.6 12.5
2 17.2 2.1 43.6 10.6
3 17.4 1.6 42.8 9.0**
4 17.5 1.2 42.1 7.8*
5 17.6 0.9** 41.9 7.0*

* Nonsignificant with p > 0.01; ** Nonsignificant with p > 0.001.

ˆ
Relative diameter error ijk ijk

ijk

d d

d

�
�

ˆ
Relative volume error ij ij

ij

V V

V
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error (bias) and relative error (% bias), as well as its
level of significance, for both section diameter and
total volume, as a function of relative height and tree
volume classes, respectively. These values are
compared with the mean value for real and relative
errors obtained after calibrating using data from
two additional trees measured at 5 and 45 dm (tables 4
and 5).

As shown in these tables, section diameter bias
tends to be larger in the upper part of the stem,
although they are generally under 5% or 1 cm.
Calibrated models tend to give unbiased estimates

(p > 0.01) for more parts of the stem than the fixed
ones, although differences are not very significant.
Calibrations using section diameter at 5 dm give
unbiased estimates for section diameters up to a
relative height of 0.6, while they overestimate section
diameter for the upper part of the stem. In evaluating
bias in volume prediction, differences between fixed
and calibrated alternatives are more obvious.
Calibration using 5 dm height measurements give
unbiased volume estimates (p > 0.05) for all volume
classes, except for larger trees (over 900 dm3), while
marginal models tend to underestimate tree volume
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Figure 6. RMSE of relative section diameter (left) and tree volume (right) for the different analysed alternatives. Calibration
use data from two additional trees within the plot.
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Table 4. Mean value for real (Bias) and relative error (%Bias) in section diameter prediction. Comparison between marginal,
marginal covariate and calibration (using two trees per plot) alternatives. Level of significance is referred to relative error mean
value

Marginal Marginal Covariate Calibration 45 dm Calibration 5 dm

Relative
height
class

n
Bias
(mm)

Bias
(%)

pr > t
Bias
(mm)

Bias
(%)

pr > t
Bias
(mm)

Bias
(%)

pr > t
Bias
(mm)

Bias
(%)

pr > t

0.05 412 7.97 2.49 <0.001 4.65 1.40 <0.001 7.90 2.43 <0.001 5.54 1.70 <0.001
0.1 267 0.82 0.12 0.636 1.22 0.28 0.269 0.47 0.02 0.949 1.24 0.27 0.278
0.2 299 0.14 –0.32 0.241 2.56 0.73 0.012 –0.60 –0.55 0.035 1.20 0.11 0.694
0.3 311 –0.45 –0.72 0.016 2.28 0.67 0.025 –1.39 –1.05 <0.001 –0.35 –0.67 0.025
0.4 304 1.34 –0.02 0.952 3.40 1.23 <0.001 0.46 –0.40 0.287 –0.08 –0.71 0.055
0.5 297 6.20 2.45 <0.001 7.35 3.36 <0.001 5.50 2.08 <0.001 3.44 0.94 0.054
0.6 266 10.68 4.59 <0.001 11.26 5.34 <0.001 9.45 3.84 <0.001 7.42 2.62 <0.001
0.7 251 4.38 –0.74 0.587 4.31 –0.53 0.704 3.28 –1.57 0.255 0.95 –3.43 0.018
0.8 132 –1.45 –5.32 0.009 –2.14 –5.84 0.005 –2.36 –6.20 0.004 –5.08 –8.94 <0.001
0.9 6 6.60 3.49 0.739 4.11 0.78 0.944 4.02 0.73 0.946 1.09 –2.41 0.832

n: number of observations.



for most of the classes. In any case, bias in volume
estimation is generally close to 5%, except for the
largest trees.

Discussion and Conclusions

Taper functions and single tree volume equations,
which only include total height and breast height
diameter of the tree as predictor variables, are usually
constructed and applied within a local area. The use of
these functions in a wider range of geographical
locations is problematic, since they are then applied to
trees growing in stands with different ecological or
silvicultural conditions, factors which affect stem form
and volume (Larson, 1963; Muhairwe et al., 1994;
Gregoire and Schabenberger, 1996). In the present
work, a method is proposed to deal with stem form
differences between trees and between stands by
formulating taper functions as multilvel mixed models
(Lappi, 1986; Gregoire and Schabenberger, 1996;
Tassisa and Burkhart, 1998; Eerikäinen, 2001),
including random components at tree and plot level,
whilst also taking into account the heterocedastic and
autocorrelative pattern for observations coming from
the same tree.

Multilevel mixed models enable us to obtain
estimates for the variance components determining
random variability in stem form at different levels. In
our case, greater variability in stem form is detected

between plots, a result similar to that obtained by Lappi
(1986), with Pinus sylvestris L. On the other hand,
Tassisa and Burkhart (1998) found for Pinus taeda L.
that stem form variability was greater between trees in
the same stand than between stands. This difference in
results can be explained because Tassisa and Burkhart's
model included dbh/H ratio and thinning intensity,
covariates which already explained between-stand
variability, while the other basic models only included
variables associated with relative height and diameter
(as is our case) or size (as in Lappi's approach).

A high correlation pattern is detected between
adjacent observations coming from the same tree (within
tree level). Autocorrelation and heterocedasticity are
typical difficulties associated with data used to fit taper
equations. The joint use of a variance function and a
non-diagonal covariance structure matrix, as proposed
by Fang and Bailey (2001), has allowed us to obtain
efficient estimates for the parameters in the model. The
power covariance structure selected considers that the
level of correlation among observations from the same
tree is inversely related to their separation along
the stem. This structure has been previously identified
(Álvarez et al., 2004) as the most appropriate for fitting
taper functions.

Several covariates were evaluated to explain random
variability in stem form at plot and tree level. Basal
area enters the model with a negative parameter,
affecting a term (Cijk) whose value is positive for h > 13
and negative if h < 13. This means that trees growing in
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Table 5. Mean value for real (Bias) and relative error (%Bias) in tree volume prediction. Comparison between marginal,
marginal covariate and calibration (using two trees per plot) alternatives. Level of significance is referred to relative error mean
value

Marginal Marginal Covariate Calibration 45 dm Calibration 5 dm

Volume
Class
(dm3)

n
Bias

(dm3)
Bias
(%)

pr > t
Bias

(dm3)
Bias
(%)

pr > t
Bias

(dm3)
Bias
(%)

pr > t
Bias

(dm3)
Bias
(%)

pr > t

100 33 –0.9 –1.40 0.334 1.1 0.42 0.771 –1.7 –2.22 0.164 –1.5 –1.93 0.187
200 35 0.4 0.27 0.867 2.3 1.17 0.469 –0.9 –0.39 0.816 –0.9 –0.37 0.826
300 46 7.1 2.36 0.042 11.3 3.80 <0.001 4.2 1.38 0.218 2.6 0.80 0.498
400 47 13.3 3.37 0.005 16.4 4.15 <0.001 13.5 3.40 0.003 8.0 2.02 0.091
500 24 15.2 3.20 0.052 19.4 4.05 0.006 13.9 2.96 0.074 8.6 1.83 0.289
600 10 38.1 6.60 0.028 38.1 6.59 0.027 33.9 5.88 0.068 34.3 5.95 0.055
700 7 –2.3 –0.25 0.903 –0.9 –0.10 0.953 –2.0 –0.17 0.949 –6.7 –0.86 0.712
800 6 18.5 2.25 0.168 21.6 2.63 0.225 26.9 3.26 0.075 14.1 1.70 0.308

>900 17 99.4 7.99 <0.001 94.8 7.98 <0.001 71.8 5.79 0.003 81.9 6.52 0.001

n: number of observations.



high densities show a greater pattern of narrowing than
trees growing in open stands, as stated in fig. 4a. On the
other hand, the ratio between breast height diameter
and mean square diameter dbh/dg enters the model with
a positive parameter, affecting term Bijk, whose value is
negative if h < 13 and positive if h > 13. The inclusion
of this social status index means that dominant trees
show a more cylindrical stem form than dominated
ones (fig. 4b) and, in the case of two trees of the same
size in different stands with similar stocking
conditions, the one which occupies a dominant position
will produce a larger quantity of timber.

Covariates entering the model indicate that trees
growing free from competition are less tapered than
trees growing under large stocking densities. This
result conflicts with both Larson's origional theory
(1963) and Assmann's study (1970) as well as with
recent studies confirming these theories (e.g., Peltola et
al., 2002). To explain this behaviour, first we should
consider that stand density or social position affect
stem form through crown ratio and length, and that
stem within crown tends to be more tapered than
branch-free bole, due to the contribution of branches to
stem growth (as was suggested as early as 1864 by
Pressler, or Hartig, 1870; both references in Larson,
1963). In most of the analysed species, trees growing
free from competition usually show a large crown ratio
and a large-tapered shape. However, free-grown stone
pine trees have a polyarchic character and lack of apical
dominance, conforming umbrella-like crowns (Lanner,
1989), where foliar biomass is concentrated in the
upper part of the stem (a phenomenon increased by
stem prunning). This leads to small crown length and
ratio, a large, branch-free bole, and a cylindrical shape
for most of the stem. On the other hand, in highly
stocked stone pine stands, the crown pattern and
branching development tend to be similar to other
coniferous species (as pointed out by Mutke et al.
2005), maintaining a single apical dominance which
leads to larger crown ratios.

The high level of non-explained random variability
indicates the presence of factors not under
consideration controlling stem form which act at plot
(e.g. ecological factors or silvicultural treatments) and
tree (e.g. microsite, distance dependent competition,
crown, genetics...) levels. Future research might focus
on identifying the main factors affecting stem form. In
an attempt to bridge this information gap, calibration
was proposed as an alternative to improve taper

models. Calibration at unsampled units is one of the
main advantages of using mixed models, as stated in
forest research since Lappi and Bailey's work (1988),
or, more recently, in the works by Lappi (1991), Fang
and Bailey (2001) or Calama and Montero (2004).

In the present work, we compared two calibration
alternatives based on measuring additional stem
diameter sections on different trees in the plot at 5 dm
or 45 dm height. The use of additional section diameter
measurements as explanatory covariates in stem taper
or volume equations has been a common practice in
forest research (Laasasenaho, 1982; Kilkki, 1983;
Martínez-Millán et al., 1992; Kozak, 1998). In these
works, it was necessary to measure this additional
section for all the trees, while in the proposed
calibration approach, tree volume predictions are
improved if just one additional measurement is taken
for a single tree per plot.

Calibration does not lead to a substantial increment
in section diameter predictive accuracy, although
calibrated diameter estimations are less biased than
marginal ones. Calibrated predictions using 5 dm
height measurements are less biased, leading to
unbiasedness and significant reductions in error for
tree volume predictions. With respect to the number of
trees included in the calibration sample, the differences
between including three, four or five trees are small, so
it is assumed that the inclusion of a larger number of
trees will not improve predictions. The evaluation
of both RMSE and bias trend on section diameter
across different relative heights show that calibration,
especially that which uses 5 dm heights, is significant
in that it reduces bias, mainly in the lower sections. As
a result, calibrated tree volume predictions are more
accurate and unbiased than marginal ones, since section
diameters are more adequately predicted in the lower
part of stem, where a large amount of timber is
concentrated. Unbiased and accurate single tree volume
prediction is useful, for example, in determining stand
volume in management inventories. From this point
of view, the use of three additional section diameter
measurements at 5 dm height per plot could be
interesting to improve stand volume estimates.

The main drawback of the model is the biased, less
accurate trend for section diameter estimates in the
upper part of the stem. This can be explained by the
different pattern of stem narrowing that stone pine trees
show when the section is located within the crown,
where section diameter decreases quite rapidly from
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shoot to shoot. To take into account this pattern it
would be necessary to include nonlinear parameters in
the model, or at least, define a different stem shape for
the part of the stem above the base of the crown
(Burkhart and Walton, 1985). In our case, as crown
dimensions are not available and the amount and value
of the timber in that part of the stem is quite low
(mainly dedicated to fuelwood), we decided to
maintain the simpler linear structure.

Calibration leads to a slight improvement of the
model when compared to the marginal basic and
covariate models. The efficiency of the marginal and
marginal covariate predictions, without calibration,
might then seem sufficient in most cases. Even by using
a simple OLS taper function (see table 2, last column),
the predictive ability is similar, although parameter
estimation is not so efficient. If we take into account
that calibration means increasing inventory costs, the
proposed model should only be calibrated when very
accurate volume estimates are required, or in those
cases where complementary data are already available.

In any case, it is important to point out that, despite
the scarce results obtained through calibration, the
methodology proposed in the present work could be
useful for formulating taper functions for other species
showing a more regular pattern of stem narrowing.
Another possibility for improving predictions would be
to use the methodology for fitting a more flexible
nonlinear taper function, (e.g., variable exponent taper
equation, such as that formulated by Kozak, 1988),
but in this case, the covariance structure formulation
would be more complex. Finally, both multilevel mixed
models as well as calibration should be considered
useful techniques for modelling other tree-level
variables which display patterns of spatial or temporal
correlation.
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