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Abstract
Aim of the study: To evaluate the morpho-physiological changes of Acacia auriculiformis in response to seawater induced salin-

ity stress along with its tolerance limit.
Area of study: Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh.
Material and methods: Three saline treatments (4, 8, 12 dS m–1) were applied to six-month aged Acacia auriculiformis seedlings 

from January 2014 to June 2014 and the tap water was used as control treatment. To observe salinity effects, the following param-
eters were measured by using various established techniques: plant height and leaf number, plant biomass, shoot and root distribu-
tion as well as shoot and root density, water uptake capacity (WUC), water saturation deficit (WSD) and water retention capacity 
(WRC), exudation rate, and cell membrane stability.

Main results: Diluted seawater caused a notable reduction in shoot and root distribution in addition to shoot and root density, 
though plant height, leaf number and plant biomass were found to be decreased to some extent compared to control plants. Water 
status of the plant also altered when plants were subjected to salinity stress. Nevertheless, membrane stability revealed good find-
ings towards salinity tolerance.

Research highlights: Considering the above facts, despite salinity exerts some negative effects on overall plant performance, 
interestingly the percent reduction value doesn’t exceed 50% as compared to control plants, and the plants were successful to toler-
ate salinity stress till the end of the experiment (150 days) through adopting some tolerance mechanisms.

Keywords: Salt stress; halophytes; growth parameters; WUC; exudation rate; membrane stability.
Abbreviations used: BSMRAU (Bangabandhu Sheikh Mujibur Rahman Agricultural University); RCBD (randomized complete 

block design); DATI (days after treatment imposition); RWC (relative water content); WUC (water uptake capacity); WSD (water 
saturation deficit); WRC (water retention capacity); FW (fresh weight); DW (dry weight); TW (turgid weight); ROS (reactive oxy-
gen species). 
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man, 2010). The most alarming point is that, each year 
around 1.5 million ha of land are being taken out of 
production because of excessive salinity levels (Munns 
& Tester, 2008); and if it proceeds in such way, there 
are chances that half of cultivable terrains will be lost 
by the middle of the 21st century (Mahajan & Tuteja, 
2005). Due to its annihilate nature, in a few parts of the 
world salinity is alluding as “Silent Killer” of natural 
production since it slowly kills plants and soil organism 

Introduction

Soil and groundwater salinization is one of the oldest 
and most austere environmental problems, posing 
critical challenges for the managing of agrarian and 
natural areas. These problems are pervasive all through 
the world, affecting circa ~831-950 million hectares, 
which incorporates 397 and 434 million hectares of 
saline and sodic soils correspondingly (Teakle & Tyer-
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Therefore, the main goal of this study was to appraise 
the effect of seawater induced salinity stress on the 
morphological and physiological features of Acacia 
auriculiformis plants.

Material and methods

A pot experiment was carried out in the research 
field of the Department of Agroforestry and Environ-
ment, Bangabandhu Sheikh Mujibur Rahman Agricul-
tural University (BSMRAU) (24º 09` N; 90º 26` E), 
Bangladesh, from January 2014 to June 2014. The size 
of every single pot was 28 cm (L.) × 30 cm (W.) and 
filled with a mixture of soil and cowdung at a ratio of 
4:1, which was treated with formaldehyde to curtail 
soil borne disease. Each pot contained 14.50 kg of soil, 
which was equivalent to 12.04 kg oven dry soil and 
holds about 17% moisture at field capacity (FC).

The experiment was conducted in a randomized 
complete block design (RCBD) with five replications 
and four treatments. The saline treatment variables were 
4, 8 and 12 dS m–1 and the tap water was used as con-
trol treatment (0 dS m–1). Salinity treatments were 
prepared by the intermixing of sea water and tap water 
in different proportion to obtain desired electrical con-
ductivity value. Six months aged seedlings of Acacia 
auriculiformis were used for this study. Ten days after 
transplanting, the plants were irrigated with either tap 
water or differently diluted seawater (4, 8, 12 dS m–1) 
till the end of the experiment.

Plant height and leaf number were measured at every 
one-month interval by using measuring scale and sim-
ple counting method correspondingly. At the end of the 
experiment, i.e. 150 days after treatment imposition 
(DAT), for determining total dry mass, plants were 
removed from the soil and washed in running tap water 
for a short period of time to eliminate loose soil parti-
cles and then they were placed on dry polyethylene 
sheets to allow any free surface moisture to dry out. 
After that, plants were divided into root and shoot and, 
fresh weight was taken through an electronic balance. 
Thereafter, the leaves were immersed in distilled water 
for 24 hours at room temperature in the dark. These 
leaves were weighed to record the turgid (saturated) 
weight after excess water was removed by gently wrap-
ping the leaves with a paper towel. Plant materials were 
placed in paper bags afterwards and allowed for oven 
dry at 80oC for 72 hours. After oven drying, dry weight 
of the samples was taken followed by a few minutes 
of cooling in the dry environment. Shoot and root dis-
tributions well as shoot and root densities were meas-
ured according to the equation described by Arduini et 
al. (1994) as follows:

or as “White Death” since it conjures up white images 
of lifeless shining lands covered with dead trees (Tanji, 
1990). High salinity causes diverse cooperative events 
that adversely affect all plant formative stages (Lee et 
al., 2013); with corresponding pernicious impacts on 
the plant yield resulting lessening of agricultural outputs 
by billions of dollars per annum, with remediation ac-
tivities being troublesome and costly (Nosetto et al., 
2013). The rate of plant growth relies upon a couple of 
principle events, for instance, cell division, cell enlarge-
ment and cell differentiation, together with genetic, 
morphological, physiological, biochemical and eco-
logical activities and their intricate interactions, that are 
severely overwhelmed by salinity stress (Taiz & Zeiger, 
2006; Islam et al., 2015).

Salinity stress not only threats world agriculture, but 
also jeopardizes Bangladesh food security (Islam et al., 
2016). The sustainable livelihoods of millions of people 
of Bangladesh hinge on agriculture, which acts as a 
mainstay of the economy, are severely plagued by salin-
ity stress (Abdullah & Rahman, 2015; Haque & Haque, 
2016; Islam et al., 2016). In spite of the yield of the 
alleged salt tolerant shallow rooted glycophytes is se-
verely reduced under ultra-saline soils, the halophyte 
species can be efficaciously grown in salty environment 
where the level of saltiness may stretch around 200 mM 
and more. There are various species of halophytes 
suited to grow in saline decumbent area (Hasan et al., 
2016). However, the fast-growing nature of Acacia 
auriculiformis and its good adaptability in degraded soil 
condition, especially in saline soils, it has been consid-
ered a priority species in the short-rotation plantations 
in Bangladesh, such as social forestry and agroforestry 
projects in the coastal belts (Islam et al., 2007, Abdul-
lah et al., 2015). It is a fast growing nitrogen fixing 
multipurpose tree species which prevents exposure of 
soils to direct radiation from the sun using its peren-
nial foliage as well as crown cover, and reduce the 
evaporation rate, resulting in less salt accumulation in 
the top soils (Tham & Liew, 2012; Khan et al., 2014; 
Sohel et al., 2016). Furthermore, it is extensively used 
to provide shade, form windbreaks, and the wood has 
been used widely for charcoal, fuel, pulp, tool handles, 
oars, paddles, packing cases, and furniture manufactur-
ing (Shukla et al., 2007; Chowdhury et al., 2013). 
Therefore, if Acacia auriculiformis can be brought 
under plantation in the saline prone area, the existing 
agrarian land will be more productive through minimiz-
ing the detrimental effects of salts as well as to sustain 
crop productivity, which will help to maintain a wide 
range of ecological security.

Nevertheless, salinity tolerance limit alongside 
morpho-physiological response of Acacia auriculi-
formis to salinity stress is not well understood yet. 
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calculated using the following equation (Hasegawa et 
al., 2000).

Percent reduction = Control treatment value – Saline treatment value
Control treatment value

×100

Relative value = Saline treatment value
Control treatment value

×100

The data were subjected to one-way analysis of vari-
ance (ANOVA) and different letters indicate the sig-
nificant differences between treatments at p<0.05, ac-
cording to least significant difference test (LSD) 
analysed using Statistix 10 software package. Data 
represented in the Tables and Figures are means ± stand-
ard errors (SE) of five replications for each treatment.

Results

Salinity stressed plant height and leaf number results 
indicate that the progressive increase in salinity levels 
triggers an increase in the percent reduction of the plant 
height and leaf number over control treatment. This 
increase reaches the severe level after 150 days after 
treatment (Fig. 1a, b). Plant height was reduced by 
5.56, 21.16 and 29.69% at 4, 8, 12 dS m–1 salinity lev-
els, respectively, in relation to the control plants at 150 
DAT (Fig 1a). Whereas, the number of leaves reduced 
by 1.11, 1.20 and 1.30 times compared to that of control 
plants at the same salinity levels and days after treat-
ment imposition (Fig. 1b).

There was a significant (P<0.01) negative effect of 
salt stress on plant biomass, shoot and root distribution 
as well as shoot and root density of Acacia auriculi-
formis plants (Table 1). While compared with the 
values of control plants, it was apparent that the mean 
values and the percent reduction differences were 
higher in plants that had been treated with 12 dS m–1 
salinity level (Table 1), being the total dry mass the 
variable which suffered the higher reduction (about 
50% compared to control plants).

Water uptake is essential for cell expansion and plant 
growth. The water uptake capacity (WUC) quantifies 
the ability of a plant to absorb water per unit dry weight 
in relation to turgid weight; water saturation deficit 
(WSD) indicates the degree of water deficit in plants, 
and water retention capacity (WRC) of leaf provides 
information on the capacity of a plant cell to retain 
water. With the increase of salinization period and 
salinity level, mean values of WUC and WSD were 
increased, while salinization had less effect on the mean 
value of the water retention capacity of Acacia auricu-
liformis plants (Table 2). In this regard, at 150 days 
after treatment imposition with 12 dS m–1 salinity level, 

Shoot or root distribution = Fresh Mass/Length 
Shoot or root density = Dry Mass/Length 
Water Uptake Capacity (WUC) was measured by 

using the following formula (Sangakkara et al., 1996):

WUC = (TW − FW)
DW

Where, 
TW = Turgid weight of the leaf
FW = Fresh weight of the leaf
DW = Dry weight of the leaf 

The water saturation deficit was measured by the 
following formula (Sangakkara et al., 1996):

Water Saturation Deficit (WSD %) = 100 – RWC

Where, RWC = Relative water content
Water retention capacity (WRC) is the ratio of the 

turgid weight and dry weight of a tissue and was esti-
mated by the following formula (Sangakkara et al., 
1996):

�
WRC = TW

DW
Where, 

TW = Turgid weight of the leaf
DW = Dry weight of the leaf 

The xylem exudation rate was measured at 5 cm 
above from the stem base of control and stressed plants 
after 150 days of treatment imposition. At first, dry 
cotton was weighed. A slanting cut on the stem was 
made with a sharp knife. Then the weighed cotton was 
placed on the cut surface. The exudation of sap was 
collected from the stem for 1 hour at a normal tem-
perature. The final weight of the cotton with sap was 
measured. The exudation rate (mg h–1) was calculated 
by deducting dry cotton weight from the sap containing 
cotton weight and expressed as per hour basis as fol-
lows (Akhtar et al., 2013):

Exudation rate = (Weight of cotton + sap) – (Weight of cotton)
Time (hr)

Degree of succulence and the degree of sclerophyl-
ly was estimated by using the equation as follows:

Degree of succulence = Water amount / Leaf area 
(Delf, 1912)

Where, water amount = fresh Mass – dry mass
Degree of sclerophylly = Dry mass / Leaf area (Wit-

koswski & Lamont, 1991)
Membrane stability was assessed by measuring the 

electrolyte leakage (EL %) from leaf tissue into refined 
water after 90 and 150 days after treatment imposition 
using the formula described by Sairam (1994). How-
ever, percent reduction value and relative value were 
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value (45.51) was noticed under 12 dS m–1 salinity 
level followed by 8 dS m–1 as moderate salinity level 
(35.31).

The membrane stability of Acacia auriculiformis 
plants was significantly increased by the three evalu-
ated levels of salt stress at both measurement periods 
(Fig. 2). In this regard, after 90 days of treatment im-
position at 4, 8 and 12 dS m–1 salinity levels, the mem-
brane stability index was significantly (P<0.01) de-
creased by 3.29, 4.36 and 9.62 % respectively, 
compared with that of control plants. At 150 days after 
treatment imposition, the membrane stability index was 

the plants showed higher relative value (% of control) 
of WSD (486.16%) and WUC (215.70%) than control 
plants, while WRC responded in an opposite manner, 
i.e. it was reduced to 40.88% compared to control 
plants.

There was no noteworthy difference in the degree 
of succulence, however, the degree of schlerophylly 
showed a noticeable divergence between control and 
stressed plants (Table 3). In response to seawater 
stress, the mean value of exudation rate showed con-
siderable variations in comparison with those of the 
control plants (Table 3). The highest percent reduction 

Figure 1. Response of (a) plant height (cm) and (b) number of leaves of Acacia auriculiformis to differ-
ent salinity levels at different days after treatment imposition. Means followed by a common letter are 
not significantly different at 5% level by LSD. Error bars represent standard error (±). Error bars fit 
within the plot symbol if not shown.
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water significantly reduced the plant height of acacia 
in this study (Fig. 1a). However, the plants continued 
to grow successfully throughout the duration of the 
study in spite of higher salinity levels. Reduction in 
plant height due to salt stress may be attributed to the 
effects of salts in retarding the processes of cell divi-
sion and cell expansion upon which growth depends 
on (Netondo et al., 2004; Radi et al., 2013). The results 
what we found are conforming to the results of Sohail 

lessened by 2.84, 7.72 and 13.09% at 4, 8, 12 dS m–1 
salinity levels, respectively (Fig. 2).

Discussion

Plant height represents the growing nature of the 
plants, which plays an important role in assessing the 
growth performance of the plant. Irrigation with sea-

Table 1. Effect of seawater induced salinity on total fresh mass, total dry mass, shoot and root distribution, shoot and root den-
sity of Acacia auriculiformis plants after 150 days of treatment imposition

Salinity levels 
(dS m–1)

Total fresh 
weight (g)

Total dry weight 
(g)

Shoot 
Distribution

(g cm–1)

Shoot Density
(g cm–1)

Root 
Distribution

(g cm–1)

Root Density
(g cm–1)

Control  
(Mean Value)

556.93 ± 11.73 a 260.78 ± 4.40 a 3.91 ± 0.07 a 1.96 ± 0.02 a 0.92 ± 0.01 a 0.29 ± 0.003 s

4 446.95 ± 2.30 b
(19.74 ± 0.41) c

202.11 ± 2.96 a
(22.49± 0.78) c

3.36 ± 0.04 b
(14.02 ± 1.07) a

1.63 ± 0.01 b
(16.33 ± 0.97) c

0.91 ± 0.006 a
(0.58 ± 0.17) b

0.26 ± 0.003 b 
(10.07 ± 1.26) b

8 365.51 ± 6.45 c
(34.37 ± 1.15) b

159.11± 2.70 c 
(38.71 ± 1.06) b

3.26 ± 0.08 b
(16.48 ± 2.27) a

1.56 ± 0.03 b
(20.33 ± 2.02) b

0.89 ± 0.01 a
(2.18 ± 0.28) b

0.22 ± 0.003bc 
(20.96 ± 1.30) a

12 314.27 ± 3.38 d
(43.57 ± 0.60) a

131.13 ± 1.02d
(49.71 ± 0.43) a

3.19 ± 0.02 c
(18.20 ± 0.61) a

1.44 ± 0.01 c
(26.35 ± 0.89) a

0.84± 0.01 b
(7.71 ± 1.68) a

0.21 ± 0.006 c
(26.56 ± 2.18) a

Values are means ± SE of five independent replications (n = 5). Different letters within the column indicate statistically significant 
differences between treatments, according to least significant difference test (p < 0.05). Values within parenthesis indicate the percent 
reduction value over control.

Table 2. Effect of seawater induced salinity on water uptake capacity, water saturation deficit and 
water retention capacity of Acacia auriculiformis plants at different days after treatment imposition

Days after treatment 
imposition (DATI)

Salinity levels  
(dS m–1)

Water uptake 
capacity

Water saturation 
deficit (%)

Water retention 
capacity

30 Control 0.29 ± 0.04 a 8.97 ± 0.62 c 4.30 ± 0.33 a
4 0.40 ± 0.03 ab 15.07 ± 1.37 b 3.71 ± 0.13 a
8 0.40 ± 0.06 ab 20.31 ± 3.02 ab 2.99 ± 0.10 b
12 0.45 ± 0.02 a 24.38 ± 1.08 a 2.84 ± 0.05 b

60 Control 0.32 ± 0.03 b 9.94 ± 0.73 c 4.30 ± 0.36 a
4 0.43 ± 0.04 ab 16.22 ± 2.09 bc 3.71± 0.16 a
8 0.45 ± 0.05 ab 23.10 ± 2.42 ab 2.98 ± 0.14 b
12 0.53 ± 0.06 a 28.78 ± 3.34 a 2.84 ± 0.03 b

90 Control 0.32 ± 0.05 b 10.57 ± 1.72 c 4.13 ± 0.21 a
4 0.53 ± 0.07 ab 21.45 ± 3.34 b 3.58 ± 0.20 a
8 0.54 ± 0.11 ab 27.71 ± 3.40 ab 2.90 ± 0.20 b

12 0.62 ± 0.11 a 36.72 ± 3.78 a 2.65 ± 0.20 a
120 Control 0.32 ± 0.05 b 10.93 ± 1.47 c 3.90 ± 0.10 a

4 0.61 ± 0.04 a 27.87 ± 2.66 b 3.24 ± 0.15 b
8 0.66 ± 0.06 a 37.55 ± 1.72 a 2.76 ± 0.12 bc
12 0.68 ± 0.08 a 43.64 ± 3.34 a 2.63 ± 0.26 c

150 Control 0.32 ± 0.32 b 11.17 ± 1.83 c 3.93 ± 0.16 a
4 0.65 ± 0.61 a 33.91 ± 4.19 b 2.96 ± 0.22 b
8 0.69 ± 0.66 a 47.99 ± 5.80 a 2.49 ± 0.16 bc
12 0.70 ± 0.69 a 54.31 ± 5.38 a 2.33 ± 0.14 c

Values are means ± SE of five independent replications (n = 5). Different letters within the column indicate 
statistically significant differences between treatments, according to least significant difference test (p < 0.05).



Mohammad Mezanur-Rahman, Md Anamul-Haque, Sheikh Arafat-Islam-Nihad, Mohammad Mahmudul-Hasan-Akand et al.

Forest Systems� December 2016 • Volume 25 • Issue 3 • e071

6

as a key factor for water and nutrient uptake by a plant 
from the soil. These results were in harmony with those 
obtained by Seckin et al., (2010) on barley cultivars 
and Ali (2009) on wheat cultivars.

Water stress is one of the first and most obvious 
effects of salinity and thus the determination of water 
relations is crucial for understanding salinity tolerance 
mechanisms of a plant (Netondo et al., 2004). Plant 
water status is important not only for its growth under 
favourable environmental conditions, but also for its 
ability to tolerate water deficit and high salt levels 
(Blumwald, 2000). Additionally, the importance of the 
internal water balance in plant water relations is gener-
ally accepted because of the close relationship between 
the balance and turgidity to the rates of physiological 
processes that control the quality and quantity of 
growth (Aldesuquy et al., 2009). In this experiment, it 
was found that seawater induced salinity had a con-
spicuous effect on plant water status (Table 2). The 
altering of water status may be ascribed by, in transpir-
ing plants; water is thought to come from the soil 
through osmosis process, and this water goes into the 
transpiration stream through apoplastic and symplastic 
pathways. However, seawater stress is responsible for 
changing the situation because of restricted transpira-
tion. The reduction of transpiration hinders water up-
take from the soils because of injury in the root sys-
tems, which ultimately causes the disparity of water 
status in plants. Lower water uptake is thought to be 
accountable for lessening exudation rate (Table 3). 
Exudation rate means coming out of sap from a vigor-
ously growing stem of a plant when it is cut off just 
above the ground level. The results reported by many 
researchers (Papadopoulos, 1987; Pessarakli & Tucker, 
1985, Kabir et al., 2005) correspond to the results we 
obtained.

Salt stress induced a non-significant decline in the 
degree of leaf succulence, but noticeable divergence 
was found in the degree of sclerophylly (Table 3). In 
accordance with our results, leaf succulence was found 
to decrease in three varieties of salt-stressed sunflower 
plants and two wheat cultivars (Welch & Rieseberg, 
2002; Aldesuquy et al., 2012). This may be explained 
on the basis that less absorbed water means less water 
content of the growing leaves resulting in less relative 
water content. Decreased relative water content ag-
gravates more water saturation deficit, therefore caus-
ing less leaf succulence and more sclerophylly 
(Aldesuquy et al., 2012). On the contrary, in Bruguiera 
parviflora, leaf succulence increased with increasing 
salinity (Parida et al., 2004). Increased leaf succulence 
might have resulted from the increase in water uptake 
and turgor pressure as a result of cells having a higher 
solute concentration (Jennings, 1976). It is worthy to 

et al. (2010) on Ziziphus spina-christi and Gao et al. 
(2014) on potato plantlets. The number of leaves found 
to be decreased to progressing salinity levels (Fig. 1b). 
Inhibition of the formation of leaf primodia under salin-
ity stress could be the probable reason for the reduction 
in leaf number. The decrease in leaf number may fur-
ther be carried over due to the accumulation of sodium 
chloride in the cell walls and cytoplasm of the older 
leaves. At the same time, their vacuole saps cannot 
accumulate more salt and, thereby increases the con-
centration of salt inside the cells, which ultimately 
leads to their quick death (Munns, 2002). Munns & 
Tester (2008) also stated that the ion-specific phase of 
plant response to salinity stress starts when salt accu-
mulates to toxic level in the old leaves (which are no 
longer expanding, so no longer diluting the salt arriving 
in them as younger growing leaves do), and they die 
and cause a decrease in the leaf number. These results 
are similar to the results of da Silva et al. (2008) on 
Spondias tuberosa plants and Mahmood et al. (2009) 
on Acacia ampliceps. 

Decreasing trend of biomass production (Table 1) 
under salinity stress might be due to inadequate avail-
ability of nutrients present in the growth medium and 
the decreased water entry rate of the plants and/or the 
deceased in photosynthetic output with a suppressed 
supply of CO2. Corroborate findings was also reported 
by Qureshi et al. (2000) on Eucalyptus camaldulensis 
plants. Nonetheless, shoot and root density represents 
dry mass production per unit of shoot and root length 
respectively. In contrast, shoot and root distribution 
epitomizes fresh mass accumulated per unit of shoot 
and root length, respectively. The reduction in both 
density and distribution of acacia biomass in this study 
may reflect the effect of salinity on decreasing shoot 
and root biomass (fresh and dry masses). In this re-
spect, Chopart et al. (2008) stated that evaluation of 
shoot/root density and distribution could be considered 

Table 3. Effect of seawater induced salinity on degree of suc-
culence, degree of schlerophylly and exudation rate of Acacia 
auriculiformis plants after 150 days of treatment imposition

Salinity 
levels

(dS m–1)

Degree of 
succulence
(mg cm–2)

Degree of 
schlerophylly

(mg cm–2)

Exudation 
rate

(mg h–1)

Control  
(Mean Value)

1.43 ± 1.37 a 1.25 ± 0.02 a 1754.0 ± 0.06 a

4 1.39 ± 1.18 a 1.15 ± 0.01 b 1342.0 ± 0.06 b
8 1.37 ± 0.54 a 1.06 ± 0.02 c 1134.6 ± 0.07 c
12 1.36 ± 1.25 a 0.97 ± 0.01 d   995.6 ± 0.03 d

Values are means ± SE of five independent replications (n = 5). 
Different letters within the column indicate statistically signifi-
cant differences between treatments, according to least signifi-
cant difference test (p < 0.05).
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stages. The percent reduction in plant morphological 
characters was conspicuous at the highest level, i.e. 12 
dS m–1 of seawater induced salinity. Interestingly, at 
that high salinity level, most of the plant parameters 
reduced to less than 50% compared to the control 
plants. Physiological processes of the plants also altered 
to some extent under elevated salinity levels. Neverthe-
less, established plants of this species may be tolerant 
to salt stress higher than the level used in this study 
because seedlings are more sensitive to high soluble-
salt levels than established plants.
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