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Abstract
Aim of the study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern Asplenium adiantum-

nigrum.
Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea.
Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size) 

and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L–1. Observations on rhizoidal and protha-
llial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC) 
and Lowest-Observed-Adverse-Effect-Concentration (LOEC) values for spore germination rate data were analyzed.

 Main results: Germination was speeded up by 100 to 2000 mg L–1 nanoceria, while bulk cerium oxide had the same effect for 
500 to 2000 mg L–1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be 
affected, as growth and membrane integrity remained. 

Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse 
toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, 
cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development. 

Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.
Citation: Gómez-Garay, A., Pintos, B., Manzanera, J.A., Prada, C., Martín, L., Gabriel-y-Galán, J.M. (2016). Nanoceria and 

bulk cerium oxide effects on the germination of Asplenium adiantum-nigrum spores. Forest Systems, Volume 25, Issue 3, e067. 
http://dx.doi.org/10.5424/fs/2016253-09294.

Received: 13 Jan 2016. Accepted: 14 Jul 2016.
Copyright © 2016 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non 

Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Funding: The author(s) received no specific funding for this work.
Competing interests: The authors have declared that no competing interests exist.
Correspondence should be addressed to Aranzazu Gómez Garay: magom02@bio.ucm.es

trial plants (i.e. Lopez-Moreno et al., 2010a; Lopez-
Moreno et al., 2010b). Furthermore, interactions of 
nanoparticles with other organisms that share simi-
larities with higher plant cells, such as algae, have been 
poorly studied, remaining unclear the general conse-
quences of nanoparticle exposure for plant cells (Zhang 
et al., 2012). These studies are mainly based on seed 
germination tests, seedling growth, nanoparticle uptake 
and alterations in chlorophyll content or photosyn-
thetic process (Remedios et al., 2012). 

Cerium oxide nanoparticles (nanoceria) is a nano-
sized material which includes particles of 100 nm or 
less. Nanoceria has a wide range of applications being 
its main use the formulation of slurries for the chemo-
mechanical planarization of silicon wafers in the pro-

Introduction

Industrial manufactures have produced a range of 
engineered nanoparticles (ENPs) which have resulted 
in a higher level of nanosized particles that had always 
been present in nature. This increase is raising serious 
concerns over their potential impact on the environment 
and potential adverse effects on ecosystems, as well as 
on human health. Dissimilar to bulk material, nanopar-
ticles have individual physical and chemical properties 
derived from their morphology and composition. Size, 
shape, purity and catalytic activity of nanoparticles 
determine their interaction with the environment and 
living organisms (Darlington et al., 2009). There are 
very few reports on the effect of nanoceria on terres-
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2003), through their shoots. This ability makes them 
ideal environmental indicators of contamination, espe-
cially those ferns which can tolerate a wide range of 
environmental extremes (Chang et al., 2009). In this 
sense, the species Asplenium adiantum-nigrum exhib-
its resistance to metals and potential to clean up toxic 
metals growing on mine refuse (Prasad, 2003).

The rationale of this study is based on two facts: 
first, there is no previous study on the influence of 
CeO2 on ferns; second, due to is relative developmen-
tal simplicity and speed, fern spore germination and 
early developmental stages and the tolerance of ferns 
to some pollutants make ferns an interesting model 
to study possible toxic effects of bulk-CeO2 and na-
noceria.

Material and methods

Chemicals

Nano-CeO2 (less than 25 nm particle size) and bulk-
CeO2 were purchased from Sigma-Aldrich Chemical 
Co. and used as received. The less than 25 nm particle 
size nanoceria was chosen due to its demonstrated high 
toxicity (Rodea-Palomares et al., 2011). 

Chemicals preparation and addition to 
culture medium

Dispersion of chemicals (nanosized and bulk mate-
rials) was achieved by adding a suitable amount to 
ultrapure water, and the dispersions were sufficiently 
shaken and sonicated to break up agglomerates. Each 
treatment concentration was prepared separately, with-
out dilution, by weighting them and dispersing them 
in agar (8.5 g/L) medium solution. The addition of each 
nano- and bulk particles ranged from 0 to 3000 mg L–1. 
Treatments were 0, 100, 500, 1000, 2000 and 3000 mg 
L–1 of both bulk and nanosized CeO2. 

All the nanosized and bulk-CeO2 solutions were 
prepared fresh in a final volume of 10 ml and soni-
cated for 30 s before addition to the tissue culture 
medium. After autoclave sterilization (121oC and 1 atm, 
20 min), test units (plastic Petri dishes; 9 cm diameter) 
were immediately hardened in a freezer to avoid the 
possible precipitation of chemicals (Lee et al., 2008). 

Spore germination and exposure

As biological material, we used spores from the 
leptosporangiate fern Asplenium adiantum-nigrum, 

duction of integrated circuits. Diverse results have been 
achieved; positive effects on plant growth were reached 
only at low concentrations (Diatloff et al., 2008) while 
toxicity was shown at higher concentrations (Lopez-
Moreno et al., 2010b). Furthermore, several studies 
demonstrated that nanoparticles can also have no sig-
nificant or even positive effects on plants (Remedios 
et al., 2012). However, all these studies analyze the 
effects of nanoceria in seed plants and fewer have fo-
cused on algae (Rodea-Palomares et al., 2011; Rodea-
Palomares et al., 2012). 

Ferns, with more than 9,000 species, are the second 
most successful lineage of vascular plants, after angio-
sperms. They have a very long evolutionary history 
related to so important events as the origin of land 
plants and emergence of the seed. Also, ferns are rel-
evant ecological elements in many ecosystems, espe-
cially in the tropics, where they can be dominant 
(Prada, 2004). Germination is a biological process of 
capital relevance for seed and spore plants and fungi. 
It is defined as the set of mechanisms occurring in the 
dormant germ (seed or spore) that culminates with the 
growth of the embryo or cell to form a seedling or 
sporeling able to establish in the substrate (Gabriel y 
Galán, 2010). 

Fern spores are unicellular haploid structures of 
specific variable size, produced via meiosis, with the 
faculty to create a gametophyte. Despite of a certain 
variation in the developmental pattern, the process is 
as follows: a) the spore germinates, with appearance 
of the first rhizoidal and prothallial cells; b) a fila-
mentous prothallus is developed, first as uniseriate, 
then biseriate and planar; c) a meristem is organized, 
which produces an adult, pre-sexual gametophyte 
(Gabriel y Galán, 2010). The rhizoid is a single, elon-
gated, nonphotosynthetic cell that is thought to func-
tion in anchoring and absorption of nutrients. The 
protonemal initial eventually gives rise to the photo-
synthetic prothallus of the fern gametophyte (Banks, 
1999). For many ferns, the whole process is very 
quick, lasting from some days to several weeks. Many 
physiological and ecological aspects of ferns germina-
tion have been studied (Weinberg, 1969; Lloyd, 1970; 
Raghavan, 1989; Sheffield, 1996; Gabriel y Galán, 
2010). 

Asplenium adiantum-nigrum is a frequent under-
story species of Mediterranean evergreen oak forests 
(Rodà et al. 1999) The haploid phase of the fern Asp-
lenium adiantum-nigrum L. has been previously stud-
ied (Prada et al., 1995). Germination and development 
processes fit the typical leptosporangiate fern model. 
Ferns, terrestrial and aquatic, have the capacity to take 
up large amounts of trace elements (Ozaki et al., 2000) 
and light rare elements, such as cerium (Shan et al., 
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Results 

Spores of Asplenium adiantum-nigrum examined in 
the present study began to germinate between seven 
and nine days after sowing, reaching maximum percent-
ages that ranged between 18 and 100%, depending on 
the treatment. In the control, seven days after sowing, 
a 67% spores germinated, and by day nine, germination 
was complete (100%) (Fig. 1). Seven days after sowing 
(Fig. 1A), a significant effect of nanoceria and also of 
most of the bulk-CeO2 concentrations tested was ob-
served on spore germination as compared to the control. 
The germination rate of spores treated with nanoceria 
100 to 2000 mg L–1 was significantly higher, showing 
a stimulating, speeding effect of this product. On the 
other hand, the germination at 3000 mg L–1 was sig-
nificantly lower, with a 14.3% rate of germinated 
spores. Bulk-CeO2 also showed a speeding up effect 
on germination at 500 to 2000 mg L–1, with the maxi-
mum percentage of spore germination (90.7%) ob-
served at 500 mg L–1 bulk-CeO2, while no significant 
effects were observed at other concentrations (Fig. 1A). 
The lowest-observed-adverse-effect-concentration 
(LOEC) concentration for spore germination rate 
(Table 1) was determined as the lowest tested nanoce-
ria treatment (100 mg L–1), while for bulk-CeO2 LOEC 
was 500 mg L–1 and the no-observed-adverse-effect 
concentration (NOAEC) was ≤100 mg L–1. 

Fig. 1B shows the results on spore germination eight 
days after sowing. At this point, only the highest con-
centration tested (3000 mg L–1) showed a toxic effect 
for both nanoceria and bulk materials (Table 1).

The end of the experiment was established nine days 
after sowing, when spore germination was complete 
(100%) in the control. In most treatments, germination 
also reached a 100%. Fig. 1C shows the final results. 
There were no differences between the unexposed 
plants and most nanoceria treatments. Only for the 3000 
mg L–1 nanoceria treatment an important toxic effect 
was observed. Diverse results were obtained for bulk 
material. A lower number of germinated spores was 
observed above 1000 mg L–1 concentration and this 
effect was significant at higher concentrations (Table 
1). Thus, the observed effect on spore germination was 
dependent on CeO2 concentration and particle size 
(nano- or bulk material).

The rhizoid growth was estimated as relative length 
value in comparison to the control (Fig. 2). Significant 
decreases in rhizoid growth were observed for 2000 
and 3000 mg L–1 nano-CeO2 and for 3000 mg L–1 bulk-
CeO2 while lower concentrations had no significant 
effect.

In order to further explore the cellular mechanisms 
of the observed toxicity, we took bright-field micro-

from the following location: France, Britanny Region, 
Finistére Department, Plougonvelin, in rocks near the 
sea; Gabriel y Galán s/n, oct 2011. Voucher specimen 
is deposited in the herbarium MACB (Biology, Uni-
versidad Complutense de Madrid). 

Spore samples were taken from dry material main-
tained at room temperature (approximately 20oC) until 
sowing. Multispore cultures on mineral agar medium 
(Dyer, 1979) were established by shaking fertile pinnae 
onto weight paper and placing the spores in plastic Petri 
dishes. The density of the cultures was approximately 
20 spores cm-2. Three dishes were sown for each treat-
ment. The test units were placed in an incubator at a 
controlled temperature of 22 ± 1oC under cool white 
fluorescent lamps (irradiance of 50 µmol m-2 s–1) in a 
16-h light/ 8-h dark cycle.

A spore was considered germinated when the rhizoid 
was evident, emerging from the opened spore wall. The 
germination percentage was recorded every day until 
there was no further increase. Indices of No-Observed-
Adverse-Effect concentration (NOAEC) values (mg/L) 
and Lowest-Observed-Adverse-Effect-Concentration 
(LOEC) values (mg/L) (OECD, 2014) were obtained 
from the evaluation of spore germination rate of Asp-
lenium adiantum-nigrum exposed to nanoceria and 
bulk-CeO2.

Observations on rhizoidal and prothallial cells dur-
ing first stages of gametophyte development were also 
made. The lengths of the rhizoids were scored at the 
end of the experiment. Bright-field micrographs were 
taken with a Nikon microscope equipped with a 
Coolpix digital camera. 

Statistical data treatment

Each concentration point was conducted in triplicate. 
A total of 300 spores were analyzed in each treatment 
(100 in each replicate). Under a compound light mi-
croscope, germinated spores were counted from a pool 
of 100 spores randomly selected in each Petri dish, 
excluding those abortive or irregularly formed. Data 
were reported as mean ± standard error (SE). Data were 
analyzed using a one-way analysis of variance and the 
Duncan’s test. 

Analysis of variance (ANOVA) was used to deter-
mine the NOAEC and LOEC values for spore germina-
tion rate data. The Dunnett’s test was used to calculate 
the minimum difference between the control and the 
treatment means detected as being statistically signifi-
cant. Significant difference was defined as that with a 
p value < 0.05 in all statistical analyses. All the statis-
tical analyses were implemented using the statistical 
package Statistica v. 9 (StatSoft, 2009).
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Figure 1. Effects of diverse nanoceria and bulk-CeO2 treatments on the germination of Asplenium adiantum-nigrum recorded at: 
(A) seven days after sowing, (B) eight days after sowing, and (C) nine days (end-point) after sowing. The values are given as mean 
± SE (standard error) of three replicates. Data with different letters are significantly different at P < 0.05 (One-way ANOVA; Dun-
can’s test).
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of nanoparticles compared to an equal mass of fine par-
ticles of the same material (Donaldson et al., 2002; 
Monteiller et al., 2007; Sager, 2009). However, other 
reports (Warheit et al., 2006; Warheit et al., 2007) have 
questioned this hypothesis and, in agreement with other 
results (Rodea-Palomares et al., 2011), our data do not 
support the view that surface area might work better than 
mass concentration as a dose variable when photosyn-
thetic organisms are tested.

Differences in the germination rate have been ob-
served between spores subjected either to nanoceria or 
bulk-CeO2 even for the lowest concentration tested (100 
mg L–1, Fig. 1 A and B). At this concentration, germina-
tion was speeded up by nanoceria, while spore germi-
nation in bulk-CeO2 was retarded (Fig. 1 B). On the 
other hand, only 500 to 2000 mg L–1 concentrations of 
bulk-CeO2 showed a similar pattern. In fact, bulk ma-
terial responds to a dose/response curve (Fig. 1 B). 
Differences between the control and the treatments 
decreased for the eighth and ninth day after sowing, 
when only the highest concentration (3000 mg L–1) 
treatment showed toxicity for both chemicals, although 
it was stronger for nanoceria (Fig. 1 B and C). The 
parameters in the spore germination test, including 
NOAEC and LOEC, were lower for bulk-CeO2 end-

graphs of Asplenium adiantum-nigrum germinated 
spores exposed to the treatments. In the control 
(Fig. 3A), as well as in 100 (Fig. 3B) and 500 mg L–1 
nanoceria (Fig. 3C), well formed protonema cells with 
bright green chloroplasts were clearly visible. In con-
trast, nanoceria at concentration above 1000 mg L–1 
and bulk material above100 mg L–1 generally resulted 
in germinated spores, many of which manifested ab-
normalities, such as damages to their internal structure, 
collapsed 2-3 celled filaments (Fig. 3E); filaments of 
2-3 cells aborted and collapsed (Fig. 3I), chloroplast 
damaged cells (Fig. 3D-K) and multiple rhizoid forma-
tion or aborted protonema (Fig. 4), that sharply contrast 
with the healthy controls. 

Discussion

The germination of the spores of Asplenium adian-
tum-nigrum is affected by the addition of CeO2 to the 
culture medium. Materials surface chemistry is vital in 
biological interaction (Karakoti et al., 2006). In general, 
for a fixed mass of particles, surface area increases as 
particle size becomes smaller. Thus, a dose-dependence 
on particle surface area may explain the greater toxicity 

Figure 2. Effects of nanoceria and bulk-CeO2 treatments on rhizoid growth of Asplenium adiantum-nigrum. Values are related to 
rhizoid growth in control treatment (0 mg L–1). The values are given as mean ± C.I. (95% confidence interval) of three replicates.
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Table 1. Estimation of No-Observed-Adverse-Effect concentration (NOAEC) values (mg/L) and Lowest-Observed-Adverse-
Effect-Concentration (LOEC) values (mg/L) obtained from the evaluation of spore germination rate of Asplenium adiantum-
nigrum exposed to nanoceria and bulk-CeO2

Treatment
Seven Days After Sowing Eight Days After Sowing Nine Days After Sowing

NOAEC (%)a LOEC (%)a NOAEC (%)a LOEC (%)a NOAEC (%)a LOEC (%)a

Nanoceria <100 mg L–1 100 mg L–1 ≤2000 mg L–1 3000 mg L–1 ≤2000 mg L–1 3000 mg L–1

Bulk-CeO2 ≤100 mg L–1 500 mg L–1 ≤2000 mg L–1 3000 mg L–1 ≤1000 mg L–1 2000 mg L–1

a These values were derived from ANOVA using Dunnett’s procedure with p < 0.05.



Aranzazu Gómez-Garay, Beatriz Pintos, Jose-Antonio Manzanera, Carmen Prada, Luisa Martín and José-María Gabriel-y-Galán

Forest Systems� December 2016 • Volume 25 • Issue 3 • e067

6

rupture, cytoplasm leakage, and intracellular damage 
including chloroplast lysis for most treatments (Fig. 3 
D-K). Similar results were obtained in the green alga 
Pseudokirchneriella subcapitata (Rodea-Palomares et 
al., 2011). These authors indicate that nanoceria cyto-
toxicity could be mediated by the effect of nanoceria 

point (nine days) than for nanoceria (Table 1). This 
supports the requirement of the use of both, nano and 
bulk material for toxicity tests.

Taking into account the differences among angio-
sperms and ferns, some authors (Lopez-Moreno et al., 
2010b) showed, at concentrations of nanoceria from 
500 to 2000 mg L–1, relatively low to moderate toxic-
ity on seed germination of alfalfa (Medicago sativa), 
cucumber (Cucumis sativa), tomato (Solanum lycoper-
sicum) and corn (Zea mays). Nanoceria did not affect 
germination in lettuce (Lactuca sativa), tomato (Sola-
num lycopersicum), cabbage (Brassica oleracea), 
soybean (Glycine max), carrot (Daucus carota), peren-
nial ryegrass (Lolium perenne), corn (Zea mays), cu-
cumber (Cucumis sativus), oat (Avena sativa), and 
onion (Allium cepa) at concentrations between 250 and 
1000 mg L–1 (Andersen et al., 2016). The toxic effect 
at the highest concentration tested (3000 mg L–1) was 
more marked for nanoceria than for bulk-CeO2. At this 
highest nanoparticle concentration, cell toxicity could 
be related to concentration and to the presence of na-
noparticle aggregates (Rodea-Palomares et al., 2011).

No significant differences were observed for rhizoid 
growth among the control treatments (Fig. 2). The rhizoid 
is the cell responsible for the absorption of nutrients and, 
keeping again the differences, acts as the root. It has been 
reported previously (Lopez-Moreno et al., 2010b) that 
root growth was reduced in alfalfa and tomato but was 
significantly promoted in cucumber and corn. Andersen 
et al. (2016) found that nanoceria alter average root 
length, and hence root growth was decreased in cabbage 
and corn, but was promoted in cucumber and onion. Ma 
et al. (2010) only detected a reduction on the root elonga-
tion in lettuce but no effect was detected for a suspension 
of 2000 mg L–1 nanoceria for rape, radish, wheat, cab-
bage, tomato, and cucumber. All these results suggest 
that the effects produced on early plant growth of na-
noceria is species dependent. Nevertheless, rhizoid is a 
unicellular structure and, in this sense, differences with 
an organ (root) are evident. Furthermore, alterations in 
normal development of gametophyte were observed. For 
example, as shown in Fig. 4, more than one rhizoid was 
emitted by single spores. However, we did not observe 
cell damage in rhizoid structures.

Two explanations have been proposed for CeO2 
toxicity effects: mechanical damage to the cell mem-
branes due to the numerous edges, corners, and reactive 
sites present in the crystal structure of the nanoparticles 
(Rogers et al., 2010); or the generation of ROS (reac-
tive oxygen species), thus inducing oxidative stress and 
cell toxicity leading to lipid/protein oxidation (Thill et 
al., 2006; Park et al., 2008; Zeyons et al., 2009). Al-
though we did not examine the presence of particles 
anchored to the cell surface, we did observe membrane 

Figure 3. Bright-field micrographs of Asplenium adiantum-ni-
grum exposed to diverse nanoceria and bulk cerium oxide treat-
ments. (0) Non-germinated spore. (A) Control plate, with early 
2-3 celled filaments, showing rhizoids of normal length and 
well-developed chloroplasts. (B) Spores exposed to 100 mg L–1 
nanoceria. (C) Spores exposed to 500 mg L–1 nanoceria. (D) 
Spores exposed to 1000 mg L–1 nanoceria. (E) Spores exposed 
to 2000 mg L–1 nanoceria. (F) Spores exposed to 3000 mg L–1 
nanoceria. (G) Spores exposed to 100 mg L–1 bulk cerium oxide. 
(H) Spores exposed to 500 mg L–1 bulk cerium oxide. (I) Spores 
exposed to 1000 mg L–1 bulk cerium oxide. (J) Spores exposed 
to 2000 mg L–1 bulk cerium oxide. (K) Spores exposed to 3000 
mg L–1 bulk cerium oxide. Bar = 100 µm (0); 57 µm (A); 40 µm 
(B-K).
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toxicity is not apparent when low/moderate concentra-
tions of nanoceria are added to the culture medium. 
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