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With the increase of economic globalization, com-
petitiveness and need of quickly respond to customers 
demand, the management of supply chains is acquiring 
importance in many companies and sectors (Petrovic 
et al., 1999; Eshlaghy & Razavi, 2011; Li et al., 2010; 
Rong et al., 2011; Al-e-Hashem et al., 2012; Badole 
et al., 2012; Li et al., 2012; Park & Jeong, 2014). How-
ever, supply chains are complex systems and their 
management depends on the level of knowledge ac-
quired about them (Janamanchi & Burns, 2013). Be-
sides that, the control and management of a supply 
chain is an area with many and rapid changes, develop-
ing day by day, as is shown in the literature (Petrovic 
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Abstract
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Introduction

A supply chain is characterized by a set of inventory 
and entities, in which are included producers, suppliers, 
distributors and retailers, where materials are trans-
formed in products and delivered to the final customer 
(Eshlaghy & Razavi, 2011; Al-e-Hashem et al., 2012). 
Raw materials, intermediate or finished products flow 
between geographically distributed facilities, which 
acquire, transform, store or sell them (Mourtzis et al., 
2008), existing a direct flow of material and an inverse 
flow of information (Eshlaghy & Razavi, 2011; Al-e-
Hashem et al., 2012), as presented in Figure 1.
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grated into this range of management. However, at the 
present, does not exist a common consensual definition 
of the forest sustainable management. This sector man-
agement should attend to aspects such as ambient 
preservation and future sustainability, always aiming 
profit maximization (Guinard et al., 1998; Varma et al., 
2000; Alonso-Ayuso et al., 2011). Besides that, require-
ments imposed by the industry, government, public, 
products, recreation, conservation, and preservation 
laws have increased the complexity of forest-based 
supply chain management (Beaudoin et al., 2008).

The control techniques have been successfully ap-
plied to the supply chain management due to their 
ability to handle with systems dynamic behaviour. The 
MPC (Model Predictive Control), an advanced control 
methodology, has distinct characteristics that give it 
advantages in the treatment of such problems. Although 
this technique has already been applied to supply chains 
management in several areas, this has not happened in 
the forest industry. Therefore, this work proposes the 
analysis of the potential application of MPC to the 
forest-based supply chains management.

This paper is organized as follows: in section 2 is 
elaborated a review of the state-of-the-art of MPC ap-
plication in supply chains, also presenting a brief 
overview of MPC concept. Section 3 presents the for-
est supply chain, describing its main processes, par-
ticipants and faced problems. Section 4 describes the 
potential use of MPC techniques in the forest-based 
supply chain, particularizing for an use case in the 
biomass sector. Finally, in section 5 are drawn the main 
conclusions. 

MPC application in supply chains

As previously mentioned, a supply chain manage-
ment consists of a set of approaches that efficiently 
integrate the several entities involved in demand sat-
isfaction at the lower possible price (Fu et al., 2014). 
Thus, the global performance is highly dependent on 
the coordination and actions of each contributor (Perea-
López et al., 2003; Maestre et al., 2009). In the current 

et al., 1999; Eshlaghy & Razavi, 2011). The concept 
of uncertainty is also often related with supply chains, 
requiring more flexibility and so making the manage-
ment more complex (Mentzer et al., 2001; Vorst & 
Beulens, 2002).

The goal of a management system is to reduce the 
processing and delivery times, with the increase of 
products and services quality. The use of efficient man-
agement techniques will allow the reduction of produc-
tion cost, inventory, supplying and service costs in each 
process (Eshlaghy & Razavi, 2011). In some compa-
nies, the incorporation of management techniques 
represented cost savings of 5-6  % (Huang et al., 2009).

The functions performed in a supply chain are inter-
dependent. In this sense, an entity’s inefficiency implies 
a decrease in the overall performance (Stevens, 1989; 
Swaminathan et al., 1998; Vorst & Beulens, 2002). In 
this way, the enterprises should integrate their objec-
tives and activities to optimize the whole supply chain. 
If each enterprise tries to optimize its performance, the 
supply chain will become under-optimized (Vorst & 
Beulens, 2002; Eshlaghy & Razavi, 2011; Park & 
Jeong, 2014). Thus, in an integrated point of view, the 
flow of material must be optimized, i.e., the products 
must be produced and distributed in the adequate quan-
tities, places and times, with minimized costs to sat-
isfy demands. The information flow between supply 
chain members is also an important issue, as it influ-
ences the production schedules, inventory control and 
delivery plans (Lee et al., 1997; Eshlaghy & Razavi, 
2011; Park & Jeong, 2014). However, if the supply 
chain is multi-business oriented, this integration and 
coordination reveal themselves complex (Stevens, 
1989; Parmigiani et al., 2011; Park & Jeong, 2014). 
Furthermore, the previous goal of long-term optimiza-
tion has been replaced for short term fluctuations in 
products’ demand. Thereby, the supply chain manage-
ment, in many cases performed by static models, needs 
to employ new dynamic and complex tools (Laurik-
kala et al., 2005).

The sustainable management of supply chains is also 
receiving more attention (Parmigiani et al., 2011; Seur-
ing, 2011). The wood, as a natural resource, is inte-

Figure 1. Supply chain flows (adapted from Min & Zhou, 2002). 
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2013). Its main characteristics and advantages are: a 
cost function that measures the supply chain perfor-
mance that can be maximized or minimized, MPC can 
be formulated to be stable and robust even in the pres-
ence of disturbances and stochastic demand (Wang 
et al., 2007; Puigjaner & Laínez, 2008; Fu et al., 2013). 
Also, it enables the integration of constraints in produc-
tion, inventory levels and dispatch capacity, and defines 
operational objectives concerning how the following/
monitoring of inventory goals and responses to custom-
ers’ orders are achieved (Wang et al., 2007), among 
others.

The operating principle behind MPC is based on the 
online optimization with a sliding prediction window 
that evaluates a cost function for the control action 
determination (Seborg et al., 2004; Camacho & Bor-
dons, 2007; Alessandri et al., 2011). Namely, the MPC 
concept can be summarized as follows: a model of the 
system is used to predict, at each sampling instant k, 
the future outputs ( ŷ ) over a determined prediction 
time horizon P, as represented in Figure 2. The values 
of ŷ depend on both the past inputs and outputs as well 
as on the past and future control actions. An optimiza-
tion algorithm is used to maximize or to minimize a 
cost function to compute the future control actions, 
over a control horizon M, that will try to keep the sys-
tem as near as possible to the set point (target), which 
can be constant or variable. From the evaluated set of 
control actions, only the first control action is effec-
tively implemented. At each next sampling instant the 
whole process is repeated in order to update the model 
parameters and compute the next control action to 

paradigm, enterprises do not compete with each other 
in the same supply chain. Instead, they act as a whole 
and are the supply chains that fight for leadership. The 
one that provides to the customer the intended products 
in the right conditions of quantity, time, place and price 
will stand out (Braun et al., 2003). However, the supply 
chain is a complex system, where the influence of many 
factors should be studied and considered in its manage-
ment (Fu et al., 2014).

Traditionally, in supply chain management have been 
used heuristics or mathematical programming tech-
niques (Li & Marlin, 2009). A common optimization 
method in supply chains is the individual analysis of 
the constituent elements. This ignores the fact that there 
are dynamic interactions between the several entities 
and that optimization should be performed as a whole. 
Control techniques are adequate to deal with these 
dynamic interactions of the system and, therefore, to 
optimize supply chains performance, often subjected 
to time varying demand conditions (Mestan et al., 
2006). In this sense, control theory has been used as a 
management tool due to its ability in dealing with un-
certainty, delays and lack of information (Blanco et al., 
2008; Sarimveis et al., 2008; Hai et al., 2011; Ivanov 
et al., 2012), which occur in supply chains.

The implementation of MPC (Model Predictive 
Control), also designated as rolling-horizon planning, 
receding-horizon control, dynamic matrix control or 
dynamic linear programming, in inventory control and 
supply chain management has revealed itself an inter-
esting option (Braun et al., 2003; Miranbeigi et al., 
2010; Wang & Boyd, 2010; Hai et al., 2011; Fu et al., 

Figure 2. Basic concept of MPC operation (adapted from Seborg et al., 2004; Camacho & Bordons, 2007). 
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compared centralized and decentralized management 
strategies, confirming increases of profit up to 15 % on 
the centralized approach. The underlying methodology 
of their work encompassed a discrete dynamic model 
MILP (Mixed Integer Linear Programming) of the 
system with information and material flows, a dy-
namic optimization framework that considers all supply 
chain elements and respective interactions, and a pre-
dictive control approach that updates the decision 
variables when changes occur in the supply chain.

Seferlis & Giannelos (2004) applied the MPC prin-
ciples in a control approach based on a two levels opti-
mization of supply chains with multi-products, multi-
echelons and independent production lines. As in a 
management system, the goal is to satisfy the customers’ 
demands at the lowest operating cost. A penalty term is 
used to avoid abrupt changes. There were also used 
dedicated feedback controllers to keep the inventory of 
the several nodes between pre-set levels. The developed 
tool was tested presenting good performance for deter-
ministic and stochastic variations in demand. In addition, 
was studied the influence of the delays in transport, the 
dimension of the control horizon and of the models qual-
ity in the control performance.

Dunbar & Desa (2005) demonstrated through a re-
alistic simulation example the applicability of distrib-
uted nonlinear MPC to dynamic management of supply 
chains. This is based on local optimization of each 
subsystem and the corresponding result delivered to 
the adjacent subsystems.

Mestan et al. (2006) considered in their work a hy-
brid supply chain optimization through MPC, with 
continuous and discrete dynamics and logical rules. 
The system was modelled by MLD (Mixed Logical 
Dynamical) and the overall profit optimized by MPC. 
In addition, unknown but measurable changes were 
implemented in demands in order to examine the dy-
namic responses of the different nodes, i.e., assuming 
that at current instances demands are measured, but the 
future demands are unknown. Finally, were compared 
a centralized support decision scheme and two decen-
tralized approaches. The results showed a better inven-
tory management and production scheduling with the 
centralized configuration of MPC.

In Wang et al. (2007), the authors have implement-
ed a MPC technique in tactical management problems 
encountered in the semiconductors manufacturing sup-
ply chain. Among the found problems, are emphasized 
the high stochasticity and nonlinearity in production 
times, demand and customer orders. The advantages 
of MPC were demonstrated using three benchmark 
problems. There were also tested the effects of model 
parameters synchronism by comparing robustness and 
performance metrics. Besides this work, in Wang et al. 

implement (Perea-López et al., 2003; Doganis et al., 
2008; Sarimveis et al., 2008). The main advantages of 
MPC in supply chains are its ability to deal with vari-
ability in supply and demand and consider the future 
evolution of the setpoint and known disturbances.

In this context, a fundamental requirement of MPC 
is a supply chain model that adequately describes the 
dynamic behaviour of the system (Mastragostino et al., 
2014). Through this process model, the MPC will be 
able to react beforehand to possible disturbances 
(Wang, 2013).

The first application of MPC to inventory manage-
ment was depicted in 1992, in the Kapsiotis & Tzafes-
tas work (Kapsiolis & Tzafestas, 1992; Fu et al., 2014). 
Afterwards, Tzafestas et al. (1997) applied MPC con-
cept in decision support systems to solve integrated 
problems of planning and production in a stochastic 
environment. 

In the Sarimveis et al. (2008) work it was performed 
a review of control theory application in supply chain 
management, considering its classical formulation and 
proposing other sophisticated methodologies, in which 
MPC is included. Follows the presentation of several 
developments made to this field.

In Bose & Pekny (2000), MPC was applied to plan-
ning and scheduling problems, enabling the integration 
of uncertainty in material processing time, random 
equipment breakdowns or uncertainties in demand. 
Unlike other techniques applied to these problems that 
fix a moment in time, MPC allows the time evolution 
monitoring of the system, i.e., allows its dynamic 
analysis. In this work, the predictive model calculates 
the goal of flow inventory while the scheduling model 
attempts to achieve the desired inventory levels in 
tasks. Thus, target inventory is the controlled variable 
and scheduling tasks the manipulated variables.

In the work of Braun et al. (2003) it was demon-
strated the MPC applicability in supply chains manage-
ment, emphasizing its robustness, flexibility and abil-
ity to reduce safety stocks. Its performance was 
proven in a problem with six nodes, two products and 
three echelons proposed by Intel Corporation, where 
existed demand uncertainty and model inaccuracies. 
Besides that, they showed the conversion of available 
information in the supply chain in MPC variables 
through an example of two nodes supply chain. With 
the application of MPC in the larger problem, the au-
thors conceptually proved the efficiency of MPC han-
dling with plant-model mismatch, constraints and in-
formation sharing.

To maximize profit in supply chains with multi-
products, distribution networks with multi-levels with 
plants with multi-products, Perea-López et al. (2003) 
applied a predictive control strategy. In their work were 
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with multi-echelon, showing decreases in stock lacks 
without excessive inventories.

Integrated into the overall management of inventory 
at strategic and tactical levels, Alessandri et al. (2011) 
implemented an MPC approach in real-time decision in 
tactical transport. MPC was used to predict demand, in 
a reliable and short time manner. To maximize the sup-
ply chain profit, Niu et al. (2013) implemented an MPC 
method to predict demand and control the inventory in 
a single unit. As manipulated variables were defined the 
ordering and the pricing, with different dynamics in the 
supply chain. Ordering is seen as having a deterministic 
and a stochastic component. This strategy was compared 
to another without pricing dynamic policy and order-up-
to-level showing its efficiency.

Subramanian et al. (2013) used distributed and co-
operative MPC in supply chain inventory management. 
In this strategy, the local decisions of the several enti-
ties are taken based on the overall optimization of the 
supply chain. The solution was tested for an example 
with two nodes and compared with other conventional 
distributed operating policies. Still in inventory supply 
chain management, Subramanian et al. (2014) proposed 
the application of economic MPC with closed-loop 
properties. Besides that, demonstrated scheduling and 
control integration through an example of a manufac-
turing facility with multiproduct production.

Mastragostino et al. (2014) presented a support de-
cision system for supply chain management based on 
a robust MPC strategy. This system was tested in two 
case studies with two processes and revealed a marked 
decrease in demands return. The work includes two 
uncertainty propagation mechanisms, one based on 
open-loop approach and other approximately closed-
loop, i.e., a less computational expensive method to 
approximate the future closed-loop behaviour.

Besides the above-mentioned studies, many other 
works have been addressing this theme (e.g. Hai et al., 
2011; Fu et al., 2013; Fu et al., 2014; Han & Qiao, 
2014; Kawtar et al., 2014; Pannek & Frazzon, 2014). 
However, as far as is the authors’ knowledge there is 
no example of MPC application to the forest supply 
chain. Based on the advantages presented with the ap-
plication of MPC in other supply chains, it is proposed 
in this work the implementation of this technique in 
the forest supply chain, presenting a use case on bio-
mass supply chain.

Forest-based supply chain

Forest planning problems are several and cover as-
pects from planting, cutting, construction of access 
roads to transportation, among others (Hachemi et al., 

(2004) and Wang & Rivera (2008), the same issue of 
MPC application in tactical decisions of semiconductor 
manufacturing supply chains management was also 
addressed. 

Blanco et al. (2008) applied the MPC in the opera-
tional planning of a fruit industry supply chain. This 
choice was based on MPC’s ability to deal with uncer-
tain, multivariable and highly interactive systems. This 
type of supply chain, contrary to others, seeks to create 
a pre-delivery commitment, rather than respond to 
online demands. The work consisted in a computer 
aided decision tool that includes uncertainty and disrup-
tion episodes in short-term and medium/large term 
forecasts of important parameters (resources availabil-
ity, costs, among others). 

Doganis et al. (2008) developed a framework that 
integrates MPC and sales Time Series Forecasting for 
supply chain management. The data generated by the 
time series forecasts is used as inputs to the predictive 
control module. Several linear and nonlinear forecast-
ing methodologies were tested, concluding that the 
time-series presented mostly a nonlinear behaviour. The 
results proved that the forecasting accuracy has impact 
in the control performance. 

Given the need for competitiveness in the market 
and the need to deal efficiently with supply chain dy-
namics, Puigjaner & Laínez (2008) developed a supply 
chain integrated solution that incorporates design-
planning and financial formulations. For this, it was 
used an MPC approach with stochastic optimization 
and an MILP model for problem representation. The 
developed solution was tested in a case study. The 
proposed control strategy proved to be efficient in deal-
ing with uncertainty and incidences through the com-
bination of reactive and preventive approaches. Also, 
this strategy may operate as a supervisory module 
contributing to close the information loop in the dy-
namic supply chain management.

Within semiconductors manufacturing supply chains, 
Huang et al. (2009) presented a testbed that integrates 
DEVS (Discrete EVent System Specification), MPC 
and KIB (Knowledge Interchange Broker) in a scalable 
and robust manner. The testbed was evaluated with 
different experiments, showing the benefits and chal-
lenges related to using and developing of manufactur-
ing processes realistic models and processes control 
policies. The MPC control algorithm was based on a 
linear time-invariant model. Through simulations was 
proved that the MPC remains stable and robust even 
in the presence of uncertainty and nonlinear conditions. 

To deal with real-time optimization of a supply chain 
with uncertainty, Li & Marlin (2009) developed a new 
robust MPC method. The method performance was 
proven by its application to a real industrial problem 
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imposed by legislation, of large continuous clearcut 
areas (Goycoolea et al., 2005).

Forest operations management deals with time 
scales ranging from a strategic level (decades) to an 
operational level (daily and hourly tasks) (Chauhan 
et al., 2011). The highest levels of planning establish 
limits to the following levels. In particular, for exam-
ple in the harvesting task, the strategic level set the 
volume of wood to cut in the next decades to achieve 
the forest management goal. At the tactical level are 
chosen which stands to cut in each period and which 
access roads to build based on the strategic goal. Fi-
nally, at the operational level are defined how many 
and which are the collection sites, roads are built and 
schedules are made (Clark et al., 2000). At the tacti-
cal level are also defined the required production 
capacities. Through these, it is possible to the com-
pany determine whether to subcontract other compa-
nies for the year and define their work hours (Beau-
doin et al., 2008).

Figure 3 presents the generic processes of the forest 
supply chain. As can be seen, the first process to be 
considered is the harvesting in forest areas when trees 
are cut and branches removed. The species vary de-
pending on the stands (Rönnqvist, 2003). By “stands” 
should be understood areas for forest harvesting at 
operational level. At the strategic level, these areas are 
called “macro-stands” (Cea & Jofré, 2000). Later, the 
forwarding process occurs, in which the logs are moved 
from the cutting areas to the proximity of access roads 
in the forest. Finally, the wood is transported to the 
desired site which can include sawmills, pulp-mills, 
paper-mills, heating plants and power plants (Rön-
nqvist, 2003).

The entities involved in this supply chain are sev-
eral and can vary from country to country and depend 
on the addressed industry. Thus, as main actors can be 
mentioned: industrial forestry companies, public or 
private, which have forest lands and mills for process-
ing; associations of forest owners, representing private 
entities and with their own mills, independent mills, 
without associated forest lands, and independent own-

2011). In these, it is necessary to attend to environmen-
tal and enterprise problems, as well as operation rules 
(Hachemi et al., 2011). Furthermore, forest planning 
is performed in a stochastic environment without high 
quality information. This is due to the fact that informa-
tion collection in this area, such as trees diameter, 
species, dimension and location of internal nodes, 
among others, is complex and expensive (Chauhan 
et al., 2009).

At the beginning of the 70’s, the forest management 
paradigm was mainly focused on stands and on trees, 
undergone a change with modifications of public per-
ception about environmental issues. Since then, are 
being incremented management practices oriented to 
ecosystems (Heinimann, 2010), considering features 
such as wildlife, water, soil, landscape, etc. (Martins 
et al., 2005; Marques et al., 2011). Thus, forest plan-
ning, formerly simple and direct, become highly com-
plex, with different planning levels, concerning large 
regions and small stands (Church et al., 2000). This 
becomes even more complicated in multi-business 
environment (Bredström et al., 2004; Beaudoin et al., 
2007). Besides that, with the new customer oriented 
forest supply chain approach, it is necessary to daily 
manage the ongoing operations (Palander et al., 2005). 
This new approach aims to deliver the right products, 
at the right times and quantities (Carlsson & Rönnqvist, 
2005).

Since the 60’s, mathematical models have been 
used in forest-based planning problems (Goycoolea 
et al., 2005; Beaudoin et al., 2007). FORPLAN is 
probably the most well-known forest modelling sys-
tem (Church et al., 2000). Although many models 
have been developed, in many cases, the planning 
continues to be often based on intuition and experi-
ence (Beaudoin et al., 2007). Even more, the com-
monly used approach is centralized, which is not the 
most indicated to multi-business contexts (Beaudoin 
et al., 2010). The spatial component has also been 
present in forest planning because it has effects on 
wildlife, landscape and on other environmental issues. 
Among the common practices is the forbiddance, 

Figure 3. Generic scheme of the forest-based supply chain processes.
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The bucking is also a task sometimes associated with 
the harvesting. This is the cutting of the logs into 
smaller pieces that are then used in industrial process-
ing. Due to its impact on the final product, and because 
it is an irreversible process, good planning should be 
performed, preferably integrated into the remainder 
supply chain planning (Dems et al., 2013).

Transportation cost represents a significant parcel 
in the supply chain total cost (Rönnqvist et al., 1998; 
Forsberg et al., 2005; Carlsson & Rönnqvist, 2007). 
Since the 90’s, this issue has becoming more relevant 
in forest sector companies, namely the control and 
scheduling quality of transportation systems (Hachemi 
et al., 2008; Hachemi et al., 2011; Hachemi et al., 
2013). This process planning is performed from the 
supply points, i.e., forest areas or terminals, to the 
demand points as paper mills, pulp, saw, heating plants 
or terminals (Carlsson & Rönnqvist, 2007). Therefore, 
the existence of an efficient road network affects the 
performance of the forest industry (Henningsson et al., 
2007). This problem is similar to the problem VRP 
(Vehicle Routing Problem) (Carlsson & Rönnqvist, 
2007).

The different levels of planning imply different de-
cisions on transportation. At the operational level are 
often determined the individual routes of trucks, and 
backhauling decisions if existent (Carlsson & Rön-
nqvist, 2007). This possibility of backhauling (see 
Figure 4) is an influence factor on transportation cost 
(Carlgren et al., 2006). Through backhauling, instead 
of trucks make the return trip empties, and therefore 
with low efficiency, are found new charge points in the 
opposite direction increasing the load on its total trip 
(Palander & Väätäinen, 2005; Carlsson & Rönnqvist, 
2007). However, backhauling possibilities are usually 
limited in forest (Forsberg et al., 2005).

ers, not linked to any industry (Rönnqvist, 2003; Carls-
son & Rönnqvist, 2005).

Harvesting planning aims to long-term tasks sched-
uling in order to maximize the cut volume and the 
profit respecting the imposed restrictions (Liu et al., 
2006). One of the restrictions of this problem is that 
some jurisdictions prohibit clearcuts, i.e., large areas 
cut (Brumelle et al., 1998; Gunn & Richards, 2005). 
Moreover, stands adjacent to clearcuts cannot also be 
cut until the clearcut stand has regenerated to a certain 
level (Gunn & Richards, 2005). These adjacency re-
strictions complicated even more the process, partly 
nullifying the models previously used in harvesting 
planning (Brumelle et al., 1998). This has increased 
the use of heuristics instead of mathematical program-
ming in planning models development. However, with 
this technique it is difficult to find, with certain, the 
global optimum (Heinonen & Pukkala, 2004). An-
other relevant factor that also influences the annual 
planning of harvesting is the climatic conditions 
(Karlsson et al., 2003; Karlsson et al., 2004).

Another issue that must be taken in account is the 
increased use of mechanized equipment in the for-
estry sector. This is mainly due to the need for in-
crease productivity, i.e., for economic reasons, and 
for increase security (Marshall et al., 2006). There are 
two types of equipment used in harvesting: the har-
vesters and the forwarders. The harvesters cut the logs 
and let them in the forest, where the forwarders collect 
and pile them next to the access road. The trucks col-
lect the logs from the piles and transport them to the 
desired destination. Because of this work sequence it 
is needed synchronization in tasks planning. The time 
and cost of moving equipment between stands will 
depend on the distance between them (Bredström & 
Rönnqvist, 2008).

Figure 4. Transport possibilities: direct flow and backhauling (adapted from Carlgren et al., 2006). 
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MPC applied to forest-based supply 
chain

As stated in section 3, forest supply chain is complex 
since it generates a wide variety of products, integrates 
several processes and entities and attends to several 
problems of management and planning.

Although not known by the authors the application 
of control techniques, namely MPC, in this supply chain, 
the reviewed and discussed literature in section 2 shows 
the potential of this methodology for the forest supply 
chain management. Therefore, it is proposed the integra-
tion of MPC in the forestry industry, particularizing its 
implementation for a use case on biomass supply chain.

Use Case

This use case is integrated into the FOCUS (Ad-
vances in Forestry Control and aUtomation Systems in 
Europe) project. FOCUS is a 7 FP SME-target collabo-
rative RTD project which objective is to “improve sus-
tainability, productivity, and product marketability of 
forest-based value chains through an innovative techno-
logical platform for integrated planning and control of 
the whole tree-to-product operations, used by forest-
producers to industry players” (www.focusnet.eu).

Within the FOCUS project, are involved the devel-
opment and integration of several components, name-
ly the planning, control, sensors, among others, showed 
in Figure 5, connected through a central component 
denominated FOCUS Core.

Also, it must be referred that there are two types of 
trucks, with and without crane. The main difference is 
that trucks without crane need other equipment to load 
and unload (Bredström & Rönnqvist, 2008). Thus, the 
occupation of the loaders when trucks arrive can be 
another cause of delay in transportation. Consequently, 
the truck has to wait implying higher transportation costs 
(Hachemi et al., 2008). Rather, trucks with crane can 
manage these tasks autonomously. However, the crane 
weight withdraws from 5 to 10 % load carrying capac-
ity (Bredström & Rönnqvist, 2008). In addition, differ-
ent materials have different densities and hence different 
weights. These factors will influence the amount of wood 
transported by a truck and consequently the cost of 
transportation (Carlgren et al., 2006).

Although the transport is usually driven by trucks, 
in cases where the distances between supply and de-
mand points are high, can be economically advanta-
geous to use other means of transportation, such as train 
or ship. Still, the first part of the transport is done by 
trucks since the trains and ships collection points are 
fixed (Forsberg et al., 2005).

It should be noted that although the described pro-
cesses are transversal to the various branches of the forest 
supply chain, some processes, and specific considerations 
have to be included in particularized situations. For ex-
ample for the pulp and paper industry other aspects must 
be considered such as the wood fibre (Carlgren et al., 
2006). In turn, in the biomass sector the chipping process 
should also be treated, which consists in the wood logs 
and harvest residues conversion in small pieces to be used, 
for instance, in power plants or heating plants.

Figure 5. Components of the FOCUS architecture.
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sented in equation (1). In our case, the actual measure-
ment of the moisture content is performed upon mate-
rial reception at the mill. At the piles the moisture 
content is inferred from a model.

	
Moisture content ( %) =  
= f (wood type, meteorological data, … ) 	

(1)

Figure 7 presents the proposed control methodology. 
Considering the forest supply chain and the concept of 
MPC, the applied methodology will consist on the 
modelling of the processes through dynamic models 
that adequately describe the system behaviour, with 
information sharing across the whole system. This is 
because the processes are interdependent, and the one’s 
results have influence on other processes results, and 
so in the entire supply chain.

The implementation of MPC in this pilot case also 
includes the coordination between the planning and 
control levels. Namely, the planning level involves 
two planning sub-levels, the tactical and the opera-
tional. The tactical level aims to maximize the net 
profit and, in this sense, define the number of equip-
ment (chippers and trucks) needed to accomplish with 
the power plant demand. On the other hand, the op-
erational level is responsible for the routing and 
scheduling of chippers and trucks in a synchronized 
manner, considering the minimization of operational 
costs, such as vehicles utilizations, distances, waiting 
times, fuel consumption, among other factors.

As previously mentioned the power plant demand 
consists in a quantity of wood material in MWh, con-

This European project encompasses four pilot 
cases, covering the supply chains of lumber, pulp-
wood, biomass and cork transformation. In particu-
lar, pilot case II, described in this work, is named 
“Control of biomass and transportation to energy 
conversion sites”. It is located in Finland and in-
volves a local company, which main objective is to 
optimize chips delivery in power plants aiming en-
ergy production.

Although biomass supply chain involves several 
processes as described in section 3, this pilot case will 
focus on the chipping and transportation processes, 
as depicted in Figure 6. The overall problem consists 
in wood logs transformation into chips by the chipping 
process and their subsequent transport to the power 
plants by trucks, for posterior energy production. The 
chips are directly loaded on trucks during the chipping 
process. In this context, may be involved several 
stands, with several piles each and several power 
plants. In a normal daily scenario can be considered 
about 1-6 chipping sites, 11 chippers, 20 trucks and 
10 power plants. Each power plant demands the in-
tended MWh on a weekly basis, and may also impose 
a daily minimum. It should be noted that the conver-
sion of m3 to MWh depends on the material density 
and wood moisture content. However, the moisture 
content of the wood pile is normally an unknown 
parameter. This parameter can be measured using sen-
sors, which is a task associated with one of the work 
packages of the FOCUS project, or can be estimated 
through models, which depend on different factors, 
such as wood type, weather, among others, as pre-

Figure 6. Considered processes in pilot case II.
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and control levels will enable to plan the chipping and 
transportation processes and to insure the timely re-
sponse to disturbances such as breakdowns of equip-
ment and delays. 

The initial operational plan provided by the plan-
ning level considers the synchronized routing and 
scheduling of chippers and trucks for a working day. 
In this way, it consists in a table with the tasks and 
schedules of chippers and trucks, indicating the origin 
and destination nodes with the corresponding loading 
and unloading services, as exemplified in Figure 8 for 
a small dimensional problem with two chippers, four 
trucks and six power plants. In this figure “p” repre-
sents the pile, “c” the client, in this case the power 
plant, and “d” the loading and unloading services at 
piles and clients, respectively. The “t” regards the 
terminal, at which the equipment stands during the 

strained to moisture content thresholds and time win-
dows in which the power plants accept the delivery of 
material. Chippers’ and trucks’ schedules, as well as 
the planned flows for the day, are used as inputs for the 
control level, which will verify if the plan is still able 
to be respected and react according that result. In detail, 
three control situations may occur: if the current state 
of the system is favourable to satisfy the plan within 
certain pre-defined limits, the initial control actions 
will be maintained; if the control detects the need to 
readjust the system, then actions related with schedules 
and tasks are directly performed to accomplish the plan; 
however, if these adjustments involve major changes 
in the system such as the hiring of new resources, the 
control will send an alert to the upper level of planning 
that will decide on the implementation of the sug-
gested changes. Therefore, the coordination of planning 

Figure 7. Proposed control methodology.
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Subject to:
V ≤ maximum number of trucks defined by planning
K ≤ maximum number of chippers defined by planning

Where:
wvp = waiting time of truck v in pile p
wvc = waiting time of truck v in client c
tv = transportation time of truck v
tk = chipping time of chipper k
V = set of v trucks
K = set of k chippers

Conclusions

Model Predictive Control has proved to be a successful 
technique in the process control applications. In this paper, 
it is provided an overview of its application as a manage-
ment tool for supply chains. The mentioned works have 
demonstrated economic benefits for the involved partners 
through the MPC use since it enables the global perfor-
mance optimization even in the presence of uncertainties 
and disturbances. Despite these facts, and as far as we 
know, MPC application is inexistent in the forest-based 
supply chain. This work has described the generic char-
acteristics of the forest supply chain, and proposed the 
application of MPC in this area, in coordination with the 
planning level. The advantages of the proposed method 
were presented regarding a use case in the biomass supply 
chain. Therefore, by integrating planning and MPC, it will 
be possible to plan in a properly manner the involved 
processes, in this case the chipping and transportation, 
and respond in time to critical events and disturbances 
such as equipment’s breakdowns or delays. At the present 
a set of tests is being conducted to evaluate the perfor-
mance of the proposed methodology and, if required, 
redesign and/or tune the models and the optimization 
algorithms. From the performed simulations, it is possible 
to know in advance the impact of the occurrence of dis-
turbances in the supply chain. This is a major contribution 
since it enables to correct beforehand or alert the planning 
level to generate a new plan. 
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non-working period. To illustrate the information 
concerning this initial operational plan, the “p2d1”, 
marked with a circle in Figure 8, regards the first 
loading service in pile 2 performed by the truck 3 at 
time instant 195.

As depicted in Figure 7, the information contained 
in this plan is loaded to the optimizer. In the case of 
disturbances, such as breakdowns, delays, bad weath-
er conditions, etc., which imply the deviation or failure 
of the daily plan, the optimizer will compute the next 
control actions to be implemented in the processes in 
order to accomplish the initial plan. For instance in the 
occurrence of a truck breakdown, the optimizer can 
change the other trucks schedules and tasks to cover 
that truck work, without change the initial resources 
pool. The used optimization algorithm can be per-
formed using techniques such as PSO or Genetic Al-
gorithms, which is a method for solving optimization 
problems based on natural selection of organisms. In 
this technique, the optimization is based on concepts 
such as the evolution and the survival of the fittest 
organism.

Also, an essential component of the MPC are the 
predictive models, in our case concerning the chipping 
and transportation processes. With these models, the 
controller will be able to forecast the behaviour of the 
system based on the current state provided by the sen-
sors. Due to the nature of the biomass supply chain, 
models will be based on Discret-Event Simulation 
(DES). In this technique, the systems are modelled 
through sets of queues and activities, and the changes 
in states are dependent on the occurrence of events at 
discrete points of time, such as, for our case, the truck’s 
loading or unloading, the start of chipping, etc. The 
models were developed using a discrete-event simula-
tion tool. 

The predictive models will be used by the opti-
mizer in the minimization of a specific cost function. 
This cost function consists in an estimation of the wait-
ing and transportation times which are related with the 
operational costs, as represented in equation (2). In this 
sense, in a first instance if the verified disturbance 
consists in a delay, the algorithm will try to adapt the 
schedules or send alert to the planning level in order 
to comply with the daily deliveries to the power plants, 
at the lowest cost, i.e., minimizing the total trucks 
transportation time, the total chippers transportation 
time, and the total chipping time. However, if the dis-
turbance consists in equipment malfunctioning and 
severe weather conditions, the algorithm will reallocate 
the tasks for that day, always aiming the chips delivery 
at the lowest cost.   

	 min J = ∑wvp + ∑wvc + ∑tv + ∑tk	 (2)
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