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Abstract
Aim of the study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. 

A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest 
restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire 
severity affects fungal colonization ability.

Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species 
adapted to fire disturbance.

Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undis-
turbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole 
root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits 
(tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and 
soil chemistry upon them. 

Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in 
soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity.

Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting 
plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. 
pinaster in Mediterranean forests after wildfires.
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restoration of the vegetative community following a 
disturbance (Claridge et al., 2009, Rincón & Pueyo, 
2010). Indeed, survival of tree seedlings strongly 
depends on the rapid formation of an efficient root 
system, determined by the development of mycor-
rhizal symbiosis but also by favourable ecological 
conditions (Jackson et al., 2007, Palfner et al., 2008). 
ECM help their plant symbionts by improving water 
and nutrient uptake from the soil, carbohydrate dis-
tribution and production of plant growth regulators 
and avoiding water losses and root desiccation 
(Rincón et al., 2007). All this contributes to prevent 
environmental stress caused by drought (Scattolin 

Introduction

Wildfires constitute the main source of disturbance in 
Mediterranean forest ecosystems (Gassibe et al., 2011), 
strongly affecting soil fungi and plant communities 
(Dahlberg et al., 2001, Carney & Bastias, 2007, Rincón 
& Pueyo, 2010). This comes both as a direct result of the 
high temperatures reached during a forest fire, but also 
indirectly through changes to soil chemical and physical 
properties, like a pH increase, enhanced hydrophobicity 
or changes of available nutrients (Certini, 2005).

Ectomycorrhizal fungi (ECM) play an important 
role in the colonization of new areas of land or in the 
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et al., 2014), pathogenic agents (Martín-Pinto et al., 
2006a) or heavy metal pollution.e

Then, how does fire affect the ability of soil fungi 
to establish new mycorrhizal symbiosis with emerging 
seedlings, might help us to understand forest recovery 
after fire. ECM inoculum may survive in infected roots, 
as sclerotia, or as resistant spores (Horton et al., 1998, 
Baar et al., 1999), likely coming from deep soil hori-
zons (Claridge et al., 2009). Abundant research has 
shown that ECM can be particularly active soon after 
wildfire (Hart et al., 2005, Jiménez-Esquilín et al., 
2007, Claridge et al., 2009). For example, a study in a 
Pinus muricata D. Don forest in California (Baar et al., 
1999) showed that ectomycorrhyzae were formed 
within six months after a stand-replacing wild fire. 

But however present and active in forest soils after 
fire, ECM fungal communities do suffer consequences 
from forest fires. Many studies report large shifts in spe-
cies abundances, decreases in diversity, large losses in 
ECM sporocarp production, and even complete loss of 
ectomycorrhizal species after severe fires (Grogan et al., 
2000, Treseder et al., 2004, Martín-Pinto et al., 2006b, 
Gassibe et al., 2011). For example, Dahlberg et al. (2001) 
stablished a link between different fire severities and 
survival of mycorrhizal flora, after four months of pre-
scribed burning in a Scandinavian boreal forest. Mycor-
rhizae were absent from high intensity burning treatments, 
while in mildly burned treatments part of the existing 
mycorrhizae were kept in the deeper mineral soil layers. 
Thus, soil horizon also mediates the impact of fires on 
ECM fungi (Bastias et al., 2006, Jiménez-Esquilín et al., 
2007, Ponzetti et al., 2007, Kipfer et al., 2010). This is 
evident as heat is greater closest to the surface, and it is 
within the top few centimeters of soil where the majority 
of fungal communities are located (Dahlberg et al., 2001, 
Cairney & Bastias 2007, Kipfer et al., 2010). 

After a forest fire, the extent of the decrease in spe-
cies richness (Smith et al., 2005, Hernández-Rodríguez 
et al., 2013) and relative abundance (Jonsson et al., 
1999) and its further impact on forest regeneration 
depend on many factors such as variations in the inten-
sity/severity of the fire, time elapsed after fire, the fire 
return interval and soil depth (Cairney & Bastias, 2007, 
Turrión et al., 2012). However, while the direct effect 
of fire is mainly destructive for existing fungal com-
munities, at the same time fire also provides large in-
puts to new communities, mainly competition-free 
resources and substrates for fungi and plants to use 
(Penttilä & Kotiranta, 1996). 

Pinus pinaster Ait. is a common widespread conifer 
species in Western Mediterranean countries, whose 
forests typically suffer from frequent forest fires. Vary-
ing fire regimes have even selected for different fire-
related traits across P. pinaster populations, like bark 

thickness, serotiny (Tapias et al., 2004) and precocity 
(Santos-del-Blanco et al., 2012). P. pinaster is also an 
obligate mutualist with ectomycorrhizal fungi and nor-
mal growth does not occur without them (Smith & Read 
1997, Read, 1998). Given its ecological relevance and 
intimate relationship between forest fires and fungi, P. 
pinaster has been the focus of several studies in Mediter-
ranean areas on how does fire affect fungal communities, 
as seen by the decrease in richness, diversity and produc-
tion of ECM sporocarps as a product of wildfires 
(Martín-Pinto et al., 2006b, Gassibe et al., 2011). Also 
several studies (Buscardo et al., 2010, 2011, Rincón & 
Pueyo 2010, Rincón et al. 2014) have found that wild-
fires influence the structure of ectomycorrhizal fungal 
communities associated with P. pinaster, showing that 
some fungal groups are potentially fire-adapted (Rincón 
et al., 2014). These findings highlight the interest to 
deepen our knowledge on the colonization of P. pinaster 
seedlings by ECM fungi after wildfires. In this frame-
work, it is particularly interesting to learn about the 
interrelationships between changes in soil properties, 
host plant development and associated belowground 
fungal communities, all of it impacting biodiversity and 
ecosystem services (Buscardo et al., 2015).

A devastating crown-fire occurred in Central Spain 
in 2008 providing the opportunity to increase further 
this knowledge. Here, we looked at how vegetative 
traits of P. pinaster seedlings differ when they are 
grown in soils exposed to increasing fire severity, hav-
ing as a consequence different biochemical properties 
and likely different potential for ECM colonization. 
We performed a bioassay experiment under greenhouse 
controlled conditions where we analyzed i) seedling 
vegetative traits and ii) ECM colonization at two dif-
ferent root vertical sections. We hypothesised that 
ECM-colonization would be highest in undisturbed 
soils and at upper root sections, and lowest in highly 
disturbed soils. We also expected colonization rate to 
be correlated with seedling performance.

Materials and methods

Study site

Our study was performed in Central Spain, in the 
Autonomous Community of Castilla y León, the third 
European region in size and one of the most strongly 
damaged by wildfires. According to the European Forest 
Fire Information System (EFFIS), 1996 fires occurred 
in the region during 2008 affecting 152.64 km2 (Quin-
tano et al., 2011). The fire season occurs during the 
period of June-September, corresponding to the warm 
to hot and dry summer, typical of Mediterranean climate. 
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hygrometricus, Baeospora myosura (Fr.) Singer, Col-
lybia butyracea (Bull.) P. Kumm., Hemimycena sp., 
Hygrophorus gliocyclus Fr., Mycena pura (Pers.) P. 
Kumm., Mycena pura ssp. lutea (Gillet) Arnolds, were 
observed at sites not affected by fire. While Galerina 
sp., Gerronema sp., Omphalina sp., Pholiota carbon-
aria (Fr.) Sing., were found in places moderately af-
fected by fire and only pyrophitic Pholiota carbonaria 
was found at those sites fully impacted by the fire. No 
ECM species were found to form sporocarps in areas 
affected by fire.

Experimental design and field sampling 

Three different sites were chosen within our study 
area according to the degree of damage caused by fire 
on vegetation and soil (Figure 1). Fire severity and soil 
damage were classified following Rincón & Pueyo 
(2010) and Vega et al. 2013 criteria: control, unburned 
site (hereafter UB) was established in an adjacent P. 
pinaster forest unaffected by fire at least in the preced-
ing 40 years (dominant trees of approximately 40-cm 
diameter). Moderate fire severity site (hereafter MFS) 
had all pine crowns and upper barks burned. Here, the 
soil organic matter was not consumed and the ground 
surface remained intact after the fire. The soil was dark-
ened and water repellent. The high fire severity site 
(hereafter HFS) had pines, canopy and understory litter 
totally burned and the entire humic soil organic layer 

The study was carried out in Honrubia de la Cuesta 
(northern part of Segovia province), which is a Mediter-
ranean ecosystem dominated by Pinus pinaster planta-
tions established by the Spanish Forest Services in 
previously deforested areas (440901-443169 longitude-
UTM, 4592 704-4590583 latitude-UTM, 750-880 
m.a.s.l.). Here, a large wildfire burned 1200 ha of for-
est and canopies in August 2008 me at 
which pine trees were about 40 years old. This site has 
a supra-Mediterranean climate with 3 months of dry 
season in the summer, a mean annual rainfall of 480-
500 mm and mean temperatures ranging from 8 to 13 
°C. The warmest month is July and the coldest January. 
These data were provided by the closest meteorological 
station (Linares del Arroyo 41º 31´ 40´´ N, 3º 32´ 72´´ 
W) located 15 km from the study area.

This area is composed of Paleozoic metamorphic 
rocks, dominated by Ordovician and Silurian shales 
(Barrenechea & Rodas, 1992). The soil is classified as 
Inceptisol suborder Xerept (Alvarez et al., 1993). 

In the forest understory, sparse individuals of Cytisus 
scoparius (L.) Link, Quercus faginea Lam and Quercus 
ilex (L.) ssp. ballota (Desf.) Samp. were found. A num-
ber of species have been identified during mushroom 
forays in the area (pers. obs.). Ectomycorrhizal Col-
lybia sp., Cortinarius cinnamomeus (L.) Fr., Cysto-
derma amianthinum (Scop.) Fayod, Hebeloma mes-
ophaeum (Pers.) Quél., Inocybe sp., Laccaria laccata 
(Scop.) Cooke, Rhizopogon luteolus Fr., Tricholoma 
scalpturatum (Fr.) Quél., and saprophytic Astraeus 
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system of each plant was then divided into two vertical 
sections, from 0 to10 cm and from 10 to 20 cm from 
the plant root collar (Anderson et al., 2007). 

All root tips were classified morphologically as 
mycorrhizal vs. non-mycorrhizal or “non vital” (Ager-
er, 1991, 1987-2002, de Román & de Miguel, 2005, 
Scattolin et al., 2008), using a Leica M3 dissecting 
microscope and a 15x magnification stereomicroscope. 
The percentage of mycorrhization per site, overall and 
at each of the two vertical sections, was calculated by 
dividing the number of mycorrhizal root tips by the 
total number of root tips (Brundrett et al., 1996). Shoot 
and root dry biomass were determined after drying the 
plant material at 70ºC for 48 h. in a drying oven (Sousa 
et al., 2011). Root/shoot ratio was derived from these 
measurements (Palfner et al., 2008).

Statistical analysis

One and two-way repeated measures ANOVA were 
applied to explore the influence that different fire dam-
age levels (UB, MFS and HFS) and root section parts 
(upper and lower) had on the response variables (mor-
phometric traits, mycorrhizal colonization and soil 
chemical characteristics). Non-independence of errors 
between seedlings grown in the same pot was accounted 
within the model. Post-hoc tests (P>0.05) (LSD for plant 
morphometric traits and percentage of mycorrhization 
and Tukey test for soil chemical variables) were applied 
to explore the differences between fire intensity levels. 
Normality of data was checked with a Kolmogorov-
Smirnov test and we applied log transformations when 
necessary, namely for some soil nutrients. We used 
STATISTICA ’08 Edition software to perform these 
statistical analyses (StatSoft Inc. 1984-2008).

Finally, we carried out a DCA (Detrended Corre-
spondent Analysis) with our complete dataset. The 
longest gradient length, indicative of how heterogene-
ous our data are, was below 3.0 standard deviations. 
Then, a Principal Component Analysis (PCA) was 
performed based on Pearson product-moment correla-
tion coefficients (R Development Core Team, 2011). 
Fire severity parameters were coded as 1 (UB), 2 
(MSF) and 3 (HSF). Only those variables showing a 
relatively strong relationship to the first two PCA axes 
(vector length greater than 0.5 units) are shown. 

Results

Plant development

Mortality rates were low and did not affect more 
than three plants per container. Seedlings grown in high 

consumed For HFS, the loss of soil structure was very 
evident and the rootlets were consumed. We devoted 
our greatest effort to select sites differing in fire sever-
ity but similar in terms of vegetation and local topog-
raphy, aiming to avoid obvious major variation between 
sampling sites (Dias et al., 2010). That is, we aimed to 
select sites such that observed differences between them 
could be linked to differences in fire intensity.

In mid-June 2009, uniform areas were sampled 
within the three above mentioned sites. A total of 15 
intact soil blocks (22 x 22 x 20 cm), five per site, were 
extracted randomly with a minimum spacing of 100 m 
with a metal cube with a sharpened edge at HSF, MSF 
and adjacent UB sites. This minimum distance between 
sampling points was chosen in order to ensure low 
autocorrelation and provide estimates as independent 
from each other as possible (Lilleskov et al., 2004, Dias 
et al., 2010, Buscardo et al., 2015). Soil blocks were 
then placed into square plastic containers of the same 
dimensions and taken to the greenhouse facilities of 
the Forest Engineering Faculty, Palencia Campus, 
University of Valladolid. Nine evenly spaced soil sam-
ples, three from each of the previously sampled sites 
were also extracted using a cylindrical (2 cm radius, 
20 cm deep, 250 cm3) soil borer (Taylor, 2002) for 
chemical analysis. The edaphic parameters analyzed 
included pH, organic matter, total nitrogen, phospho-
rous and potassium (N–P–K), sodium, magnesium, 
calcium, cation exchange capacity (CEC) and conduc-
tivity (Cond) (see details in Table 1).

Greenhouses were naturally lit, with controlled tem-
perature (15-20°C) and humidity, maintaining the 
natural soil at field capacity. P. pinaster seeds (375 in 
total) were provided by a local nursery (Viveros Fuente 
Amarga, Cabezón de Pisuerga, Valladolid, Spain), these 
were surface sterilized with 30% hydrogen peroxide 
for 30 min and washed tree times with sterile water. 
Twenty five seeds were sown in each container follow-
ing a square grid, ensuring a homogenous distribution. 
Pots were tap-watered daily and no nutrients were 
added. Four months after sowing, five randomly se-
lected seedlings from each pot (75 in total) were ex-
tracted from the center of each container thus avoiding 
border effects.

Mycorrhizal status and morphometric 
measurements

After extraction from the containers, each plant was 
rinsed with tap water in a plastic tray and gently 
shaken to soften and remove adhering soil. Tap root 
length and shoot length were measured with a ruler to 
the nearest millimeter (Palfner et al., 2008). The root 
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Mycorrhization and soil chemistry

The proportion of total mycorrhization from both 
post-fire sites was significantly lower than that from 
undisturbed soils (HSF, P=0.006; MSF P=0.005). Re-
garding the two vertical sections of the root system, 
higher levels of mycorrhization (P<0.01) were observed 
in the upper (0-10cm) section compared to the lower 
one (>10 cm) for all three sites (Figure 3). At the upper 

severity fire soils (HSF) had heavier and longer shoots 
(P < 0.01 and P=0.030, respectively; Figure 2) and 
longer roots (P=0.004) than those grown in moderate 
severity fire (MSF) and unburned (UB) soils (Figure 2). 
In turn, root length from MSF sites was also longer 
than that from UB sites (P=0.042). Root/shoot ratio 
was highest for HSF and MSF sites and lowest for UB 
samples (HSF vs MSF P=0.798; HSF vs UB P=0.0000; 
MSF vs UB P=0.0001) (Figure 2).

Table 1. Soil chemistry parameters (mean ±SE) of the 2009 at three sampling sites in a Pinus pinaster forest in Central Spain, 
one year after a wildfire. UB: soils not affected by fire; MFS, soils moderately affected by fire; HFS, soils highly affected by 
fire. (n=9, three soil samples per site)

Sites N1 P 2 K3 pH 4 MO5 Na6 Mg7 Ca8 Cond 9 CEC10

UB 0.10±0.004 a 4.40±1.30 b 115.00±6.75 b 6.04±0.12 c 1.37±0.11 a 0.016±0.004 a 0.87±0.05 a 4.08±0.38 a 0.04±0.02 a 11.35±0.69 a
MFS 0.05±0.004 b 6.06±1.30 a 168.00±6.75 a 7.30±0.12 a 0.91±0.11 b 0.020±0.004 a 0.60±0.05 b 3.07±0.38 b 0.06±0.02 a 8.23±0.69 b
HFS 0.05±0.004 b 7.66±1.30 a 115.33±6.75 b 6.83±0.12 b 1.05±0.11 b 0.020±0.004 a 0.59±0.05 b 2.65±0.38 b 0.06±0.02 a 6.88±0.69 b

Soil characteristics and their respective quantification methodology (upper numbers) with different letter indicate significant differ-
ences at P<0.05 after Tukey post-hoc test. 
  1 Total Nitrogen (%); modified Kjeldahl
  2 Assimilable Phosphorus (mg/kg); Olsen 
  3 Assimilable Potassium (mg/kg); atomic emission spectrometry
  4 pH; Ph-Meter (1:2, 5)
  5 Oxidizable Organic Matter (%); Walkey-Black
  6 Assimilable Sodium (meq/100g); atomic emission spectrometry
  7 Assimilable Magnesium (meq/100g); atomic absorption spectroscopy
  8 Assimilable Calcium (meq/100g); atomic absorption spectroscopy
  9 Soil Conductivity (mS/cm); conductivity meter
10 Cation Exchange Capacity (meq/100g)

40 a

a
b

A

Sh
oo

t h
ei

gh
t (

cm
)

35

UB MSF HSF

30

25

20

15

10

5

0

a

a

b

UB MSF HSF

2,5

2,0

1,5

1,0

0,5

B

Sh
oo

t d
ry

 w
ei

gh
t (

cm
)

0,0

50
45
40
35
30
25
20
15
10

5
0

C

Ro
ot

 le
ng

ht
 (c

m
)

UB MSF HSF

a b

c 1,25

1,00

0,80

0,60

0,40

0,20

0,00

D

Ro
ot

 s
ho

ot
in

g 
ra

tio

UB MSF HSF

a

b b
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Discussion

We found a higher mycorrhization rate for seedlings 
grown in unburned soils across all root sections, thus 
supporting our prior expectations on the negative rela-
tionship between fire severity and ECM propagules. 
Nonetheless, higher mycorrhization rates were unex-
pectedly not correlated with seedling size. In the fol-
lowing sections we discuss our results in the light of 
plant, fungi and soil features as well as their interac-
tions, notwithstanding potentially confounding factors.

Plant development

Seedlings in the high severity fire soil showed 
higher shoot height, root length and root/shoot ratio 
and also more than 10% of the shoot biomass of those 
growing in unburned soil. Similar biometric results 
have been found by Pausas et al. (2003) in Pinus ha-
lepensis Mill. seedlings in eastern Iberian Peninsula 
under three fire severity classes, where seedlings from 
sites most affected by fire grew significantly more. 
Those differences may lie in the changes in soil chem-
istry caused by different fire severities and leading to 
higher fertility (see below) (Pausas et al., 2003).

root section, we observed a higher colonization rate in 
UB sites when compared to MSF (P=0.012) and HSF 
(P=0.044) sites (Figure 3). The same trend was fol-
lowed by colonization in the lower root section, but in 
this case no differences were observed between seed-
lings from MSF soils compared to the other two sites. 
Regarding soil chemical characteristics, the main dif-
ferences between sites were a lower N, K and organic 
matter content and a higher pH and P content in burnt 
soils (Table 1).

Relationships among plant development, 
mycorrhization and soil chemistry

The PCA grouped samples from HFS and MFS sites 
in the positive area of Axis 1 whereas UB ones were 
located in the negative area (Figure 4). The two axes 
explained 68.85% of the variation present in the samples 
(48.47% axis 1 and 20.38% axis 2). Unburned soil sam-
ples appeared associated with higher values of organic 
matter, N, Ca and cation exchange capacity (CEC), but 
lower values of pH, Mg, Na and conductivity. The op-
posite was true for both burned (HFS and MFS) sites 
(Table 1, Table 2). Regarding seedling vegetative traits, 
the PCA revealed a positive correlation between shoot 
biomass with P and fire severity. Axis 1 also reflected a 
relation between higher levels of mycorrhization (total, 
0-10 cm and 10-20 cm) with the unburned sites. 
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of some kind of propagules to fire. Here, molecular 
taxonomy techniques can reveal the existence of inter-
esting pyrophitic taxa (Rincón et al. 2014).

Our experimental design did not allow separating 
root physiological or anatomical effects from those 
derived from propagule abundance or soil properties 
at the two depth levels within sites. For example, seed-
ling root distribution and length varies according to 
soil depth (Wallander et al., 2004), in this sense post-
fire seedlings tend to extend their root system verti-
cally as seen in our results by increasing mainly tap-
root length therefore also changing the distribution and 
structure of the lateral roots (Palfner et al., 2008). Also 
the mycelium of ECM fungi which is usually most 
abundant in the superficial organic soil layers in un-
disturbed ecosystems (Visser, 1995, Neville et al., 
2002, Wallander et al., 2004) may influence root mor-
phology and architecture through the formation of short 
lateral roots and root tips (Ostonen et al., 2009, 
Kubisch et al., 2015), therefore affecting seedling 
growth (Jones et al., 2003). There is also evidence of 
the stratification of fungal communities (Dickie et al., 
2002, Rosling et al., 2003; Anderson et al., 2007) be-
tween the 0–10 and 10–20 cm sections of soil profile, 
but is not always the case as reported by Anderson et 
al. (2007) where non stratified homogeneous ECM 
communities were present within the 20 cm of soil 
depth after two years after fire. 

Nonetheless, data from our unburned site provide a 
suitable baseline against which we can compare the 
two other scenarios. The higher mycorrhization rate in 
the top layer of UB plant roots might be related to ei-
ther root physiology or propagule abundance. Lower 

Mycorrhization and plant development 

Maximum ECM colonization rate was found in soils 
from unburned sites, although it did not vary signifi-
cantly among high and moderate severity fire sites. Our 
results are in agreement with a large body of research 
on Mediterranean dry forests (de Román & Miguel, 
2005, Martín-Pinto et al., 2006b, Buscardo et al., 2010, 
Hernández-Rodríguez et al., 2013) and specifically 
with some studies conducted also with P. pinaster 
(Buscardo et al., 2011, Gassibe et al., 2011, Sousa et 
al., 2011). Nonetheless, the overall evidence in this 
field cannot be considered as conclusive yet. For ex-
ample, Rincón & Pueyo (2010) found that fungal rich-
ness and colonization of P. pinaster seedlings did not 
depend on fire severity, but on time elapsed after fire. 
Indeed, time span after fire seems to mediate the evo-
lution of fungal communities, from fire-adapted taxa 
to later-stage ones (Rincón et al. 2014). 

Regarding the relationship between vertical root 
distribution (upper and lower sections) and mycorrhi-
zation rate, our results revealed how the upper part of 
the roots had the highest ECM rates across all fire 
damage levels (Visser, 1995, Torres & Honrubia, 1997). 
In fact, differences between upper and lower root parts 
across fire damage levels were kept constant (Figure 3). 
This was true also in the site most severely affected by 
fire, where higher colonization rates would have been 
expected at the lower (deeper) root parts. This could 
have come as a result of higher exposure of the top 
layer to very high temperatures and buffering of the 
lower layer (Bastias et al., 2006, Kipfer et al., 2010). 
Our results might indicate a particularly high resistance 

Table 2. Pearson´s correlation coefficients between ECM colonization, soil and morphometric variables affected by fire severity

Variables M-10 M-20 M-T R/S SB SH RL Sev pH Cond N P OM Ca K Mg CEC

M-10 1
M-20 0,291 1
M-T 0,658 0,664 1
R/S -0,181 -0,172 -0,163 1
SB -0,163 -0,085 0,039 -0,064 1
SH 0,091 -0,005 0,246 -0,171 0,657 1
RL 0,091 -0,005 0,246 -0,171 0,657 1,000 1
Sev -0,237 -0,271 -0,054 0,434 0,430 0,245 0,245 1
pH -0,323 -0,204 -0,210 0,440 0,124 -0,033 -0,033 0,616 1
Cond -0,317 -0,259 -0,159 0,486 0,283 0,096 0,096 0,866 0,927 1
N 0,317 0,259 0,159 -0,486 -0,283 -0,096 -0,096 -0,866 -0,927 -1,000 1
P -0,239 -0,272 -0,057 0,436 0,428 0,242 0,242 1,000 0,625 0,872 -0,872 1
OM 0,326 0,220 0,200 -0,458 -0,165 0,001 0,001 -0,686 -0,996 -0,958 0,958 -0,695 1
Ca 0,283 0,275 0,106 -0,474 -0,376 -0,183 -0,183 -0,972 -0,785 -0,960 0,960 -0,974 0,839 1
K -0,226 -0,049 -0,224 0,222 -0,176 -0,231 -0,231 0,005 0,791 0,505 -0,505 0,017 -0,731 -0,242 1
Mg -0,225 -0,047 -0,224 0,220 -0,179 -0,233 -0,233 0,000 0,788 0,500 -0,500 0,012 -0,728 -0,237 1,000 1
CEC 0,281 0,275 0,103 -0,472 -0,380 -0,187 -0,187 -0,975 -0,776 -0,956 0,956 -0,977 0,831 1,000 -0,229 -0,224 1

Note: significant Pearson correlations are highlighted in black P <0.05.Where M-10: ECM % 0-10 cm; M-20: ECM % 10-20 cm; 
M-T:ecm % Total; R/S: root to shoot ratio; SB: shoot biomass; SH: shoot height; RL: root length; Sev: Fire Severity; Cond; Soil Con-
ductivity; N: Nitrogen; P: Phosphorus; OM: Organic matter; Ca: Calcium; K: Potassium; Mg: Magnesium;; CEC: Cation Exchange 
Capacity. 
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other variables cannot be ruled out (Pausas et al., 2002, 
Gray & Dighton, 2009).

Soil nutrients and mycorrhization

In our study, the percentage of ECM colonization 
was positively correlated with organic matter and N, 
but negatively with P soil content. Our results are in 
accordance with those of Dickie et al., (2006) in un-
burned bioassay soils with P. sylvestris L., where seed-
ling ECM colonization was best predicted by humus 
percentage, N, Ca and clay content and soil cation 
exchange capacity from 0 to 20 cm depth. Furthermore, 
other authors noticed that fungal communities can adapt 
to more nitrogen-rich sites (Toljander et al., 2006, 
Kranabetter et al., 2009). Also, Sousa et al., (2011) 
studied 6 month-old P. pinaster seedlings grown in 
burned soils and inoculated with ECM fungi. These 
authors reported that a low N content was not a factor 
that limited plant growth, perhaps offset by a higher P 
content. Indeed increasing P availability has been re-
lated to inhibition of fungal ECM colonization (Grant 
et al., 2005, Smith & Read, 2008) and enhancement of 
plant growth (Conjeaud et al., 1996). 

In our study, mycorrhizal inoculum potential ap-
peared to be affected by soil disturbance caused by fire 
similar to that reported by Buscardo et al. (2010) and 
Sousa et al. (2011), while plant growth increased along 
a fire severity gradient. This was likely due to post fire 
nutrient deliverance in the forest soil such as P (Fierro 
et al., 2007) rather than ECM colonization. As we could 
not separate fire severity and ECM colonization effects, 
the latter also may have influenced the uptake of P (de 
Lucia et al., 1997), but likely to a lesser degree due to 
the strong fire effect (Turrión et al., 2010). Regardless 
of the limitations, bioassay studies like ours can be a 
useful tool when studying ectomycorrhizal infectivity 
and may be comparable to some field situations (Izzo 
et al., 2006). Particularly, they can provide insight 
about background mycorrhization levels in seedlings 
emerged after a fire and whether artificial mycorrhiza-
tion can improve plant growth in those situations 
(Sousa et al., 2011). Also, bioassay studies provide 
valuable information on seedling performance, which 
is the main goal of afforestation practices, even more 
after disturbing events like wildfires.

All this suggests that integrative approaches that 
combine laboratory and field experiments (Buscardo 
et al., 2011) are needed to assess ECM functioning in 
ecosystems dominated by Mediterranean pyrophitic 
species such as P. pinaster, aiming to achieve a suc-
cessful restoration of Mediterranean forest areas af-
fected by wildfire. 

mycorrhization rates in MFS and HFS in that same top 
layer compared to UB plants, is likely due to different 
soil properties. Under natural conditions, mycorrhiza-
tion rates in upper layers could be even higher due to 
mechanisms of fungal colonization such as spore dis-
persion by wind or rodents, which were suppressed in 
our experiment. Also, the same rationale applies to the 
lower layer. Studies similar to ours have also found 
lower fungal richness (Smith et al., 2004) or different 
fungal community structures (Bastias et al., 2006) in 
the upper 10 cm layer of soils variously affected by fire 
but interestingly, no trend at a depth of 10–20 cm (Bas-
tias et al., 2006). 

Considering mycorrhization rates alone, our P. pin-
aster seedlings attained smaller sizes in those soils 
where mycorrhization was highest i.e. in unburned 
soils. Nonetheless, given that potential mycorrhizal 
inoculum was confounded with soil chemistry, direct 
conclusions cannot be drawn. Inclusion in our study of 
seedlings grown on sterilized soils from the three stud-
ied sites, would have allowed measuring the effect of 
soil chemistry alone on plant growth. Notwithstanding, 
a negative effect of mycorrhization on plant growth 
rates under nursery conditions has been previously 
reported (Stenström et al., 1985, 1990, Le Tacon et al., 
1992), even though global evidence does support the 
beneficial effect of ECM species on P. pinaster plant 
growth (Sousa et al., 2012).

Relationships among plant development, 
mycorrhization and soil chemistry

Soil nutrients and plant development

In our study the main differences between sites 
were a lower N, K and organic matter content and a 
higher pH and P content in burnt soils. Previous stud-
ies had described the influence of fire intensity on soil 
characteristics and thus indirectly on plant early 
growth (Ne’eman, 1997, Pausas et al., 2003, Calvo et 
al., 2013). Thus, decrease in N availability after fire 
may have been caused by volatilization and mineral-
ization by heating the top soil (Pausas et al., 2003). 
Reversely, the P content lost by volatilization is usu-
ally low and the amount of P available to plants is 
dependent on ash deposition (Raison et al., 1985, 
Pausas et al., 2003). 

Due to nutrient deposition from ashes, fires can 
cause a short-term fertilizing effect (Fernandes & Rig-
olot, 2007, Turrión et al., 2012). This scenario is com-
patible with our results, where we found a high cor-
relation between seedling size and higher amounts of 
P (Figure 4), suggesting a causal relationship, although 
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