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Abstract
Aim of study: The goal of this paper is to analyse the importance of the main contributing factors to the occurrence of wild-

fires. 
Area of study: We employ data from the region of Galicia during 2001-2010; although the similarities shared between this area 

and other rural areas may allow extrapolation of the present results.
Material and Methods: The spatial dependence is analysed by using the Moran’s I and LISA statistics. We also conduct an 

econometric analysis modelling both, the number of fires and the relative size of afflicted woodland area as dependent variables, 
which depend on the climatic, land cover variables, and socio-economic characteristics of the affected areas. Fixed effects and 
random effect models are estimated in order to control for the heterogeneity between the Forest Districts in Galicia. 

Main results: Moran’s I and LISA statistics show that there is spatial dependence in the occurrence of Galician wildfires. 
Econometrics models show that climatology, socioeconomic variables, and temporal trends are also important to study both, the 
number of wildfires and the burned-forest ratio. 

Research highlights: We conclude that in addition to direct forest actions, other agricultural or social public plans, can help to 
reduce wildfires in rural areas or wildland-urban areas. Based on these conclusions, a number of guidelines are provided that may 
foster the development of better forest management policies in order to reduce the occurrence of wildfires. 
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Introduction
It is estimated that more than 1.3 million hectares of 

forest are destroyed by wildfires in Europe each year 
(FOREST EUROPE, UNECE & FAO, 2011). Spain is 
one of the five southern European countries with the 
highest level of damage caused by wildfires, with a 
yearly average of 19,705 wildfires from 1998 to 2007, 
affecting a total of 130,714 hectares (SECF, 2010). 
Within Spain, the case of Galicia is particularly rele-
vant. While only representing 6% of national surface 
area, between 1991 and 2010 Galicia registered an 
approximate average of 46% of Spanish wildfires and 
21% of the total burned surface area (Figure 1), accord-
ing to MARM (2012) and the regional government 

Figure 1. Galician wildfires with respect to the total number of 
Spanish wildfires (1991-2010).
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ertheless, decision-making is characterised by the 
presence of dynamic risk factors (Rogalski, 1999) 1. 

In order to study wildfires in depth, it is necessary 
to be aware of the currentsituation of the agro-forest-
ry areas in Galicia. Certain areas have scattered popu-
lations with a constant rural depopulation and con-
tinuing migration of young people to more highly 
populated areas (Marey et al., 2007). In addition, the 
thinning out of the agro-forestry sector within the 
economy has been clear for some time now, as well as 
the reduction in employment in this sector. This has 
contributed to make much more difficult youth em-
ployment in the countryside, while at the same time, 
fewer farms use woodland areas to obtain productive 
resources (Vega, 2007; Sineiro, 2006). This trend has 
also caused forestry land to become increasingly ne-
glected, allowing for an increase in the severity and 
spread of wildfires. Moreover, the structure of forest 
property is often very divided, with a high level of 
private property increasingly belonging to elderly 
people, making it more difficult to manage the lands 
correctly (Sineiro, 2006).

Galicia contains different climatic areas, resulting 
in an uneven availability of biomass that can be burnt 
(Martínez et al., 1999). This makes it difficult to or-
ganise the prevention and extinguishing of wildfires. 
Taking these circumstances into account, together with 
the social and environmental impacts caused by wild-

(Xunta de Galicia, 2011). Given the geographical con-
centration of this problem, we limit our analysis to the 
wildfires occurring in this region, also due to the lack 
of comparable data for other Spanish regions. We be-
lieve, however, that the current paper may provide 
insights which are closely applicable to other Euro-
pean rural and wild land-urban areas.

According to data provided by the Galician Institute 
of Statistics (IGE, 2012a), since 2001 the number of 
wildfires reveals an upward trend until 2005, decreas-
ing then in number. With regards to the affected surface 
area, this increased gradually from 2002 to 2006, but 
since then it has decreased considerably as well. It 
should be noted that the number of affected areas reach 
catastrophic levels during 2006. Furthermore, the evo-
lution of wildfires throughout Galicia varies consider-
ably in spatial and temporal terms. Geographically, and 
based on the data published by the IGE (2012a), wild-
fires affect more severely southern districts than north-
ern districts of Galicia, both in terms of the number of 
fires and forestry area affected (Figure 2). Also, west-
ern districts are the area in which forestry lands are the 
most affected in relation to their surface area, while the 
southern districts record the highest numbers of wild-
fires.

The wildfire risk depends on several climatological, 
social or environmental factors, which could be modi-
fied by public policies at short or medium term. Nev-

1  Following Molano et al. (2007) and Martínez et al. (2009), the causing factors of wildfires can be divided into two main categories: 
avoidable and unavoidable. Unavoidable causes are considered those that cannot be foreseen or dissuaded, whereas avoidable causes 
are those that can be prevented through individual actions or forestry policies. This implies that there are exogenous factors, which 
are uncontrollable, to which other endogenous factors must be added. In general, the unavoidable category contains natural phenomena, 
whilst the avoidable can be divided into three possible sub-categories: intentional, negligent and unknown causes. Avoidable causes 
represent almost all of the causes, although the majority of these are classified as unknown, showing that the causality of wildfires 
is not recorded reliably and depends heavily on the criteria of investigators (Pérez & Delgado, 1995; Molano et al., 2007).

Figure 2. Geographic distribution of the occurrence of wildfires during 2001-2010. a) Representation of the number of wildfires 
per district with respect to the total number of Galician wildfires. b) Representation of the affected forestry area per district with 
respect to total affected area in Galicia.
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ignition, intensity or area affected are used as depend-
ent variables (Genton et al., 2006). 

Several international studies analyze the problem 
of fires from a spatial context. For example, Preste-
mon et al. (2002) developed a model with fixed ef-
fects as to assess whether there is a spatial behavior 
in the occurrence of fires between administrative units 
from North Florida. Preisler et al. (2004) used tem-
poral and spatial effects through a logistic regression 
to study the probability of fires in Oregon (USA) since 
1970. Meanwhile, Brillinger et al. (2006) developed 
an empirical model for analyzing the evolution of fire 
risk. Their model contains both, FE and RE to analyze 
the fires occurrence in California (USA) during the 
years 2000-2003. Finally, Chen et al. (2014) also 
analyze the risks and causes of fires using spatial 
econometrics.

The aim of this study is to extend previous analyses 
using current data and taking into account the impact 
of socio-economic factors, land cover, and climatology 
using spatial analysis. Thus, econometric models have 
been developed to analyse the possible influence of 
socioeconomic factors on the risk of wildfires. The 
Ordinary Least Square (OLS) and econometric models 
for counted data are used to identify these socioeco-
nomic factors. Random effects (RE) and Fixed Effects 
(FE) are also estimated to assess the presence of spatial 
patterns. Other methods, such as the Moran’s I and 
LISA statistics, are included to determine whether 
wildfire occurrence shows spatial patterns. We expect 
the present results can help to improve public policy 
focussing on exploring spatial and temporal impacts 
on fire occurrence. 

This research starts by explaining the data and meth-
ods used. In the next section, the results are described 
and discussed, and then it follows a section in which 
the main conclusions of the research are summarized 
and policy implications are provided.

Materials and methods

Data

Data have been gathered from 2001 to 2010. The 
most up-to-date data available from the 19 forest dis-
tricts established by the Galician regional government 
were collected (Xunta de Galicia, 2011). Variability 
over time and between districts will be one of the desir-
able data properties (Cameron & Trivedi, 2009). Data 
have been grouped by forest districts in order to have 
a common geographical reference. Therefore, some 
variables had to be transformed prior to be included 
into the model by aggregating municipal data up to the 

fires, over the last few years the government has pri-
oritized the design of preventative policies, although 
most of its budget goes toward extinction activities. 
For these policies to work well, it is important to iden-
tify the factors that affect the occurrence of wildfires.

To this end, the proposed model must be simple, 
structured and easy to standardise so that it can be eas-
ily updated (King & MacGregor, 2000).

Until now, several methods have been used to iden-
tify wildfire risk factors. Some studies have used 
various explanatory variables in order to explain the 
reasons why some areas are more heavily affected than 
others, although they do not quantify the described 
relationships and/or support their arguments in a quan-
titative way (Lavorel et al., 2007). However, other 
papers use techniques based on Geographic Information 
Systems (GIS), using probability risk models and link-
ing variables to the forest environment. (Cabrera, 1989; 
Vilar et al., 2008; Chuvieco et al., 2009; Martínez et 
al., 2009; Romero-Calcerrada et al., 2010). GIS tech-
niques are used in several models in which geograph-
ic and other statistical variables are included (Pew & 
Larsen, 2001; Vega-García & Chuvieco, 2006). Rele-
vant geographic variables include the location of roads, 
and industrial or recreational areas, amongst other 
factors (Romero-Calcerrada et al., 2010). Therefore, 
geographical implications in the occurrence of wildfires 
have also been widely studied. As a result, this study 
focuses on assessing the geographical differences in 
the occurrence of wildfires. 

In some earlier work, researchers have studied the 
error term to identify geographical and temporal trends 
(Disdier & Head, 2008; Prestemon et al., 2002; Jones, 
1991; Moulton, 1986). Testing the error term allows 
the researcher to control for the unobservable factors 
across the different entities, implying that this research 
can be used to determine whether differences across 
entities are significant. Therefore, an econometric 
model with random effects (RE) or fixed effects (FE) 
can be developed in order to account for specific local 
effects.

Other papers explore the possible relationship be-
tween wildfires and a specific group of variables 
(Finney et al., 2009), including forest management 
(Prestemon et al., 2002; Butry, 2009; Wimberly et al., 
2009), meteorological variables (Aguado et al., 2007), 
and socio-economic factors (Mercer & Prestemon, 
2005). This research, as well as Prestemon et al. (2002), 
uses time series models to analyse temporal trends in 
wildfire risk. Other relevant research also includes 
socioeconomic variables such as income, machinery 
used, and/or number of livestock (Vilar et al., 2008). 
Wildfire risk is also analysed from the perspective of 
the different phases in the duration of a fire, and the 
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district level. In the following analysis, the hectare is 
the unit used to measure the surface area.

The explanatory variables are shown in Table 1, and 
these can be grouped into seven main categories, in-
cluding: the population structure, weather variables, 
territorial features, economic information, agrofor-
estry situation, wildfire characteristics and time dummy 
variables. To avoid perfect multicollinearity in the 
econometric models, the dummy year for 2001 has been 
used as a baseline, and time effects are interpreted by 

using this year as a reference point. As several variables 
for different groups showed high correlations with each 
other, a limit of 70% was set for the value of the linear 
correlation coefficient. Furthermore, the variance infla-
tion factor (VIF) was used to analyse the level of mul-
ticollinearity among the chosen variables (Neter et al., 
1983). The VIF had values lower than 2.16 for each 
variable and 3.70 for the set. These values indicate that 
multicollinearity is not a problem in the selected vari-
ables. 

Table 1. Variables

Variable Description Data 
source Mean Standard 

Error Min Max

Wildfires characteristics

Number of wildfires Number of wildfires per year 
in each district1 IGE 381.179 275.987 23.000 1,268.000

Ratio of burned-forest 
area 

Affected area, in hectares, 
between the total forestry areas 

in each district
IGE 0.017 0.030 0.000 0.223

Climatology

Summer average
rainfall

Annual average rainfall during 
the summer (l/m2) MeteoGalicia 43.217 19.821 13.55 120.917

Summer maximum
temperature

Average maximum temperature, 
in Celsius, during the summer 

in each district
MeteoGalicia 22.946 2.663 16.747 30.367

Socio-economic variables

Territorial

Ratio of protected areas Total protected areas over the 
total Forest District area MAGRAMA2 0.140 0.142 0.011 0.474

Population

People Density People by hectare in each Forest 
District IGE 1.049 1.163 0.104 5.081

Agro-Forestry

Ratio of equine stock The ratio of equines in Forest 
District livestock IGE 0.036 0.028 0.004 0.110

Ratio of natural pasture Total natural pasture area over 
the District area CORINE 0.113 0.074 0.006 0.294

Ratio of Pinus pinaster Total Pinus pinaster area over 
the forested area by District IFN3 0.390 0.201 0.044 0.831

Economy
Agricultural coopera-

tives
Number of cooperatives 
in each Forest District IGE 18.158 13.627 2.000 49.000

Dummy variable

Dummy year t3 Represents each individual year t   1.100 0.301 1.000 2.000

1 Forest administrative entity determined by Xunta de Galicia (Xunta de Galicia, 2011).
2 Ministry of Agriculture, Nature and Food Quality.
3 t= (2002,…,2010).
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was employed to calculate both the agricultural and 
forestry area (GvSig, 2014). The ratio of equines was 
also taken into account in order to describe the live-
stock structure, as in Barreal et al. (2011). This vari-
able was considered given that previous literature re-
lated the presence of equines with land management 
and fuel treatments (Rigueiro et al., 2002). The percent-
age of equines represents 1% up to 11% of total live-
stock according to each Forest District data (IGE, 
2012b). Although cattle are the main livestock in 
Galicia; equines usually graze in pasturelands or forest 
areas. The number of agricultural cooperatives is also 
included in the model. This variable can be a proxy for 
the dynamics of the rural areas. These data were col-
lected from IGE (2012b). However, we should note 
that there are some years in which yearly data are miss-
ing, so that the series had to be completed with the 
closest data points available. 

The wildfire variables were also obtained from the 
IGE (2012b). For the first six years, municipalities 
provided the data, then the burned area and the number 
of wildfires had to be aggregated by forest districts. 
The ratio of burned area was calculated using the total 
forest area provided by IGE (2012a). The GeoDa soft-
ware was used to obtain the spatial statistics of the 
dependent variables (Anselin et al., 2006; GeoDa, 
2014). In order to create the final database, and conduct 
the estimation process, the Stata 10.1 software was used 
(Stata, 2010).

Methodology

Descriptive Spatial Analysis

Graphs and statistics are useful in order to identify 
the spatial patterns in Galician wildfires. The first one 
involves the representation of the data to identify the 
temporal trends and the heterogeneity between the 
Galician forest districts. Then, in case of existing tem-
poral trends, these could be identified showing differ-
ences of each entity´s mean value. Another alternative 
is to represent the data for each year by a graph. The 
independent years could register more or less spatial 
differences. 

The Moran’s I statistic (Moran, 1948) was used for 
statistical analysis, as well as the Local Indicators of 
Spatial Association -LISA- (Anselin, 1995). With both 
statistics, the spatial dependence can be analysed using 
the autocorrelation coefficients between the Galician 
forest districts. The first statistics analyses the spatial 

Wildfires data were recorded from the Galician For-
est Districts. On the other hand, meteorological data 
were recorded directly by the weather stations, and such 
data had to be linked and extrapolated to the District 
level. Finally, the agro-forestry data are mainly re-
corded by Geographic Information Systems (GIS). 
Thus, a shape-file with the Galician Forest Districts 
was designed adding the municipality limits obtained 
from the National Geographic Institute (IGN, 2011). 
To conclude, agro-forestry data were obtained cropping 
GIS information with the previous defined shape-file. 

The data for the climatic variables were collected 
from MeteoGalicia (2012). The climate stations belong-
ing to each district were geographically located. The 
average maximum temperature and rainfall recorded 
per month during the summer were collected2. The 
proportion of the protected areas in each district was 
also included to describe relevant territorial features. 
The protected areas were obtained from the MAGRA-
MA (2010). These data were provided by two maps 
containing the Community Interest Sites (CIS) and 
Special Protection Areas for Birds (SPAB). Thus, the 
GvSig software was used to compute the size of both 
protected areas by Forest District (GvSig, 2014). In 
this way, the ratio of protected areas is computed using 
the total protected area divided by total district area. 

The density per hectare is used to describe the 
population structure. Therefore, the total population 
divided by the total Forest District area is used to cal-
culate this variable. Both data were recorded from IGE 
(2012a) and municipality statistics. This density vari-
able presents high correlations with the personal in-
come, level of studies or employment rate. In order to 
avoid such multicollinearity problems, variables refer-
ring to personal income, education and employment 
rates had to be dropped from the final specification due 
to their high correlations among each other. 

The Third Spanish National Forest Inventory (NFI3), 
the Corine Land Cover and the Livestock Census were 
the main sources to gather information about the agro-
forestry situation (IGE, 2012b). Tree dominant tree 
species were recorded in order to describe the forest 
plantations. The forestry areas, in which the Pinus 
pinaster is the main specie, were calculated from the 
NFI3 (MAGRAMA, 2008) while the district-forested 
areas were recorded from IGE (2012b). Hence, the ratio 
of Pinus pinaster was included in order to describe the 
forestry structure. The natural pasture was obtained by 
accounting for the lands where this activity is recorded 
according to the Corine Land Cover database (Euro-
pean Environment Agency, 2010). The GvSig software 

2 In some cases, climatological data were not available for all of the time periods and/or forest districts. The unavailable data had 
to be supplemented with those from other forest districts according to the climatic areas established by Martínez et al. (1999).
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heterogeneity of the sample. Meanwhile, the second 
focuses on the relationship between each geographic 
unit, identifying the clusters of study.

The Moran’s I statistic takes into account the number 
of geographical areas (N); the analyzed areas (j and i); 
the study variable for each location (y); the mean of 
the variables of interest in all areas ( ( y) ); and finally 
the weight matrix that describes the relationship be-
tween both locations (Wj,i). Then, the Moran’s I statis-
tic could be expressed by the Eq. (1).

	

I = N
Wij

j
∑

i
∑ *

Wij yi − y( ) y j − y( )
j
∑

i
∑

yi − y( )2
i
∑

	

[1]

According to the definition of the weight matrix, the 
relations between close forest districts are included. 
Therefore, the closest neighbors to each polygon are 
identified with this matrix. Mathematically, the weight 
matrix could be expressed as Eq. (2), in which ŵij rep-
resents the spatial matrix of adjacent polygon (j), re-
spect to the polygon that we are studying (i).

	

wij =
!wij
!wij

j
∑

	

[2]

The spatial relationships in this matrix can be used 
with different contiguity interpretations. In other words, 
if a regular grid is designed, the weight matrix could 
be constructed according to four spatial relationships: 
linear (Fig.3a), Rook (Fig.3b), Bishop (Fig.3c) and 
Queen (Fig.3d). These relations depend on the number 
and directions of spatial dependences that the research-
ers may find. In this research, the polygons are irregu-
lar, so the criterion with more spatial directions is se-
lected (Moreno & Vayá, 2000), and as a consequence, 
the queen contiguity is chosen to analyze the spatial 
patterns. This contiguity can be used at several levels 
(Lesage & Kelley, 2009). This research analyzes the 
direct relationships between the closed forest districts 
in terms of fire occurrence.

The LISA statistics can be developed from the Mo-
ran’s I statistics (Anselin, 1995). This is described in 
the Eq. (3) where zi represents the normalized value of 
the selected variable in respect to the mean and Ji is all 
polygons (districts) next to i. Therefore, the LISA sta-
tistics analyzes the spatial patterns between each en-
tity to the selected data. In other words, the spatial 
autocorrelation is individually analyzed.

	

Ii =
zi
zi2

i
∑ N

Wij
j∈Ji
∑ z j

	
[3]

Econometric Analysis

In order to analyse the relationship between the 
previous variables and wildfires in Galicia, a baseline 
lineal regression estimated by OLS was used. In this 
baseline estimation the coefficients are controlled by 
the heterogeneity of each district through the Huber-
White correction of standard errors (Cameron & 
Trivedi, 2009). Thus, the econometric model is pre-
sented by Eq. (4), in which the variables are arranged 
into a panel according to each district and their respec-
tive periods of time. In this equation, the subscripts “j, 
k, h” represent the type of variable, “i” is the forestry 
district, and “t” is the period.

	 Yit = β0 + β j X jit + βk Xkit + βhXhit + ε it 	 [4]

With this common specification, two independent 
equations were estimated. The first model used the ratio 
of forest-burned area in each forest district as the de-
pendent variable, and the second specification modelled 
the number of wildfires. The independent variables in 
both models include socio-economic factors repre-
sented by Xjit, (mainly population structure, territorial 
features, economic information and agroforestry data 
for each forest district), climatology represented by Xkit 
(including the variables of average maximum tempera-
ture and average monthly precipitation); and finally, the 
vector Xhit represents the dummy yearly indicators. 

Using the Box-Cox test, the functional form of the 
Eq. (4) was selected. The Box-Cox test develops a 
transformed dependent variable represented by the Eq. 
(5), in which the residual (μit) assumes a normal distri-
bution in order to estimate the parameters β and θ.

Figure 3. Types of contiguity for direct relations.

a) b)

c) d)
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In this setting, two different models could be used 
to analyse the error term: FE and RE. The FE repre-
sented by the Eq. (10) in which the error term (εit) of 
the Eq. (4) is broken into two parts: one fixed term (vi) 
and another error term (τit). 

	 Yit = β0 + β j X jit + βk Xkit + βhXhit +ν i +τ it 	 [10]

In the following RE models, the previously fixed 
term (vi) is now random. The specification of this 
model is equal to Eq. (10), but in this case the random 
term will have a mean of vi and different variance from 
zero (Var(vit)≠0). These unobservable factors are used 
for the OLS model but also for the MRP (Eq. 11), or 
NBMR in case of overdispersion.

E yit xit⎡⎣ ⎤⎦ = exp β0 + β j X jit + βk Xkit + βhXhit +ν it( ) 	
[11]

The Hausman test (H) is used to select between RE 
and FE models. The specification of this test is shown 
in Eq. (12) and analyzes the consistency of estimators 
for both models. The null hypothesis states that there 
is no correlation between the unique errors and the 
independent variables. This hypothesis is tested at the 
5% significance level. If the null hypothesis is not 
rejected, then FE are selected over RE. Otherwise, RE 
should be used.

 	
H = βRE − βFE( )′ Var βRE( ) −Var βFE( )⎡⎣ ⎤⎦ βRE − βFE( )  H ∼ χn2 	

[12]

Results
Spatial patterns and temporal trends 
analysis

The spatial patterns of the number of wildfires and 
burned-forest area ratio can be observed with graph-
ical displays. The variation of the burned-forest area 
ratio by year is represented in the Figure 4a. In this 
graph the x-axis represents the Galician forest districts 
according to each number (Xunta de Galicia, 2011). 
Different values between the districts are recorded in 
all graphs; however its difference depends on the year. 
Another way to identify the existence of spatial pat-
terns is by using the average of the burned-forest area 
ratio for the sample. This is included in the Figure 4b 
where the difference between districts can be ob-
served. Also, the temporal trends are observed per 
year.

	
g yit θ( ) ≡ yitθ −1θ

= Xitβi + µit
	

[5]

As such, if the estimation of θ is close to zero, then 
the best specification to be used would be the log-
lineal model. However, if the respective statistics are 
significant and close to one, a lineal model should be 
used. Eq. (6) is then formulated according to the fol-
lowing specification.

	 Yit = β j X jit
λ + βk Xkitλ + γ hXhit + ε it 	 [6]

Since, the number of wildfires is a counted data 
variable, the Poisson Regression Model (PRM) shown 
on Eq. (7) is employed, with the specification earlier 
presented in Eq. (4):

	
E yit xit⎡⎣ ⎤⎦ = exp β0 + β j X jit + βk Xkit + βhXhit( ) 	

[7]

Given that count data can exhibit overdispersion 
(Cameron & Trivedi, 2005), we need to assess whether 
this is present by estimating Eq. (8). Overdispersion 
implies that the variance depends on the mean plus 
square parameter (α2). In this case if α=0, then the 
variance is equal to the mean and there is no 
overdispersion; and thus, the PRM can be a suitable 
model.

	
Var yit xit( )=E yit xit( )+α 2E yit xit( ) 	

[8]

On the other hand, if the coefficient α is different 
from zero, then the number of wildfires should be 
estimated by a Negative Binomial Regression model 
(NBRM). This model is more general than the PRM 
and should prove to have a better goodness of fit in 
case of overdispersion (Cameron & Trivedi, 2009).

In order to interpret the coefficients of the previous 
model, the use of the Incidence Rate Ratio (IRR) is 
recommended as its results are easier to interpret (Long 
& Freese, 2001). As such, the IRR coefficients are 
estimated to directly quantify the values of the respec-
tive parameter estimates. This ratio is calculated by Eq. 
(9), in which the results can be analysed as a change 
in the probability of wildfire occurrence, when there is 
a change in the analysed independent variable, when-
ever the others parameters are constant.

	

IRR =
E y x,xit +1( )
E y x,xit( ) = eβ�

	

[9]
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Figure 4. Graphical representation for variation of burned-forest area ratio in Galicia from 2001 to 2010. a) Data represented by 
year. b) Data recorded by year and the mean of each district.
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Figure 5. a) The number of wildfires represented by year in Galicia from 2001 to 2010. b) The number of wildfires recorded each 
year according to Galician Forest Districts from 2001 to 2010.

	 2001	 2002	 2003	 2004	

0	 5	 10	 15	 20	 0	 5	 10	 15	 20	 0	 5	 10	 15	 20	 0	 5	 10	 15	 20

0	
50

0	
10

00
	1

50
0

a)

	 2005	 2006	 2007	 2008	

	 2009	 2010	
0	 5	 10	 15	 20	 0	 5	 10	 15	 20	 0	 5	 10	 15	 20	 0	 5	 10	 15	 20

0	 5	 10	 15	 20	 0	 5	 10	 15	 20	 b)

0	 5	 10	 15	 20	

0	
50

0	
10

00
	

15
00

0	
50

0	
10

00
	1

50
0

0	
50

0	
10

00
	1

50
0

Figure 5a and Figure 5b describe the evolution of 
wildfires per year from 2001 to 2010. The spatial pat-
terns can be identified in this graph. Figure 5b shows 
also spatial patterns in the mean of wildfires according 
to each district. Data show significant differences 
across years, therefore the number of wildfires contains 
also temporal effects.

A weight matrix should be constructed to develop 
the spatial statistics. As stated earlier, the direct Queen 
contiguity is selected to analyse the relationship be-
tween districts (Fig. 3d) and its histogram is repre-
sented in Figure 6. In this graph, it can be observed 
the lowest and highest contiguity between forest 
districts. Thus, Galician forest districts have at the 
minimum two influential neighbours and six as a 

Wildfires in each District Mean of Wildfires

Galician Forest District

Figure 6. Histogram of contiguity according to Level 1 for Gali-
cian Forest District.

selected features

2 (1)

3 (6)

4 (5)

5 (2)

6 (5)

maximum. This histogram also highlights a big num-
ber of districts with six entities around them. How-
ever, the biggest contiguity group has only three 
neighbours.
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(Moreno & Vayá, 2000). Figure 8 represents the LISA 
statistics related to each dependent variable. The 
colored results are significant at the 5% level. Taking 
into account the burned-forest area ratio, the LISA 
statistics is represented in Figure 8. In each map the 
LISA statistic for each district is represented according 
to the relation with its neighborhoods. With this result, 
the Low-Low (L-L) relation is mainly recorded in the 
North of Galicia, although, this relationship was also 
recorded in the South for some particular years. How-
ever, the High-High (H-H) relationship occurs primar-
ily in the South. Thus, Southern forest districts and 
their neighbourhoods record high values of burned-
forest area ratio.

In order to analyze the number of wildfires, the LISA 
statistics are shown in Figure 9. In these maps the Low-
Low (L-L) relationship could be observed in the North-
east districts. On the other hand, Higher-Higher (H-H) 
relations are recorded in the South and Southeast. 
Therefore, there is evidence of spatial patterns in the 
number of wildfires.

All previous graphs and statistics show the existence 
of relevant spatial patterns and temporal trends. There-
fore, these should be included in the econometric model 
for both dependent variables. The temporal trends are 
included in the empirical models by using dummy 
variables for each year, considering 2001 as the base-
line year. On the other hand, in order to correct for 
spatial patterns in the research, data are set according 
to a panel of forest districts and controlling the hetero-
geneity by district through standard errors correction. 
The spatial patterns are also analyzed using FE and RE 
models. 

Econometric models results

Results for the burned-forest area

In order to specify the most suitable econometric 
model to analyse the evolution of the burned-forest 
area ratio, a Box-Cox test was estimated (Cameron & 
Trivedi, 2009), being its results reported in Table 2.  
A logarithmic model is used in accordance with the 
results obtained in the Box-Cox test. In other words, 
the statistics could not reject the logarithmic specifi-
cation both for the dependent and independent vari-
ables. 

Following the results displayed in Table 3, the esti-
mation by OLS captures 69.04% of the variation of the 
burned forest area rate. Taking into account the F-
statistic, we find that all parameters are jointly sig-
nificant. As regards the choice between the use of FE 

The Moran’s I and LISA statistics are used to analyse 
the spatial patterns of wildfires and the yearly burned-
forest area ratio in Galicia. Figure 7 reports the Moran’s 
I statistic by year, and its average for the entire sample. 
It can be observed that Moran’s I registers higher val-
ues for the number of wildfires than for the ratio of 
burned-forest area. Thus, more spatial autocorrelation 
is detected for the number of wildfires than for the ratio 
of burned-forest area. Also, in 2007 no spatial correla-
tion is found for burned-forest area. This may be ex-
plained because in 2006 wildfires affected many areas 
(Molano et al., 2007). This caused social alarm, there-
fore over the next year, the wildfires occurrence has 
been drastically reduced. Even the recorded data for 
the burned-forest area diminished a 97% in 2007 with 
respect to 2006.

The LISA statistic represents the various significant 
spatial patterns as follows (Anselin, 1995; Lesage & 
Kelley, 2009): 

— High-High (H-H): a particular forest district and 
their neighborhoods have high values. This type of 
relationship is represented by the red color.

— High-Low (H-L): a particular forest district has 
high values and their neighborhoods have lower values. 
This type of relationship is represented by the pink 
color.

— Low-High (L-H): is similar to the previous cat-
egory, but in this case the forest district has high values 
and their neighborhoods have lower values. This type 
of relationship is represented by the sky-blue color.

— Low-Low (L-L): the forest district and their 
neighborhoods have low values. This type of relation-
ship is represented by the blue color.

The remaining values are represented by a grey color 
because these entities have a random relationship 

Figure 7. The Moran’s I statistic for the burned-forest area ratio 
and the number of wildfires recorded in Galicia during 2001-
2010.
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Figure 8. LISA statistic for the burned-forest area ratio in Galicia during 2001-2010.

2007 2008 2009

2010

Table 2. Box-Cox test for the regressions of the ratio of burned-forest area

Dependent Variable Independent Variables

Test H0
Restricted

log likelihood
LR Statistic

chi2
P-value

(Prob > chi2) Test H0
Restricted

log likelihood
LR Statistic

chi2
P-value

(Prob > chi2)

Θ = –1 360.932 742.700 0.000 λ = –1 445.396 9.150 0.002

Θ = 0 732.266 0.030 0.859 λ = 0 449.422 1.100 0.295

Θ = 1 448.330 567.900 0.000 λ = 1 448.330 3.280 0.070

and RE in the previous models, the Hausman test 
recommends the use of RE to estimate the burned-
forest ratio model (Prob>chi2= 0.98). 

The dummy variables determine significant effects 
over several years. A positive trend is identified from 
2002 to 2006. The majority of dummy variables are 
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2001 2002 2003

2004 2005 2006
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Not Significant

High-High

Low-Low

Low-High

High-Low

Figure 9. LISA statistic for the number of wildfires in Galicia during 2001-2010.

significant and positive with respect to the 2001 year. 
However, after 2006, the trend is clearly negative and 
significant for all years. These results are robust across 
the econometric selected models. 

The climatological variables show in particular the 
importance of rainfall in order to reduce the burned-
forest area ratio. This variable is significant carrying a 
negative effect in the causes of wildfire occurrence. 
Thus, the average effect of rainfall on burned-forest 
areas ratio is -0.643, when the precipitation changes 
by one unit over time and between districts. However, 
the maximum temperature has a positive effect, al-
though this variable is not significant in order to predict 
the burned area. The small variability in this variable 
may be responsible for this finding.  

In terms of socioeconomic variables, the ratio of the 
equines and the number of agricultural cooperatives 
have both a negative and significant effect on the 
burned-forest ratio area for the OLS and RE models. 
Their effects show that if the value changes over time 
and between districts by one unit, then the average ef-
fect of equine radio stock and the number of agricul-
tural cooperatives over the burned-forest area will re-
spectively decrease by a factor of -0.385 and -0.555. 

On the other hand, the density of Pinus pinaster and 
the ratio of protected areas are positively related with 
this dependent variable. The coefficients are significant 
for the OLS and RE results. We also find that the ratio 
of natural pasture has no statistical impact on any of 
the econometric models.
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Table 3. Econometric results for the regresions of burned-forest area

OLS OLS with FE OLS with RE
Coef, P>t Coef, P>t Coef, P>t

Dummy 2002
0.418

0.046
0.314

0.208
0.357

0.146
(0.195) (0.248) (0.246)

Dummy 2003
0.173

0.531
0.263

0.301
0.241

0.334
(0.270) (0.253) (0.249)

Dummy 2004
0.659

0.003
0.681

0.006
0.698

0.004
(0.1949 (0.245) (0.243)

Dummy 2005
0.883

0.000
0.912

0.001
0.942

0.000
(0.179) (0.263) (0.256)

Dummy 2006
1.172

0.001
1.188

0.000
1.230

0.000
(0.291) (0.267) (0.259)

Dummy 2007
-1.037

0.002
-1.288

0.000
-1.126

0.000
(0.290) (0.271) (0.259)

Dummy 2008
-1.557

0.000
-1.827

0.000
-1.632

0.000
(0.227) (0.265) (0.251)

Dummy 2009
-0.738

0.004
-0.739

0.048
-0.731

0.011
(0.226) (0.371) (0.287)

Dummy 2010
-0.797

0.005
-0.751

0.044
-0.732

0.008
(0.248) (0.369) (0.277)

Summer average
rainfall

-0.576
0.000

-0.720
0.000

-0.643
0.000

(0.130) (0.189) (0.176)
Summer maximum 

temperature
1.043

0.297
-0.749

0.552
-0.215

0.838
(0.970) (1.256) (1.051)

Ratio of  
natural pasture

0.119
0.405

0.000 0.084
0.695

(0.139) (omitted) (0.215)

People Density
0.344

0.026
-2.651

0.272
0.266

0.302
(0.142) (2.405) (0.258)

Ratio of 
Pinus pinaster

0.538
0.037

-5.369
0.165

0.611
0.027

(0.239) (3.851) (0.277)

Ratio of 
equine stock

-0.419
0.054

-0.182
0.612

-0.385
0.045

(0.203) (0.357) (0.192)
Ratio of 

protected areas
0.446

0.019
0.000 0.404

0.051
(0.173) (omitted) (0.208)

Agricultural 
cooperatives

-0.520
0.002

-0.901
0.621

-0.555
0.029

(0.141) (1.819) (0.253)

Intercept
-3.352

0.317
-4.353

0.581
0.819

0.836
(3.256) (7.864) (3.949)

Number of observations 190 190 190
F Statistic 112.150
Prob > F 0.000

R2 0.690

Table 4. Box-Cox test for the regression of number of wildfires

Dependent Variable Independent Variables

Test H0
Restricted

log likelihood
LR Statistic

chi2
P–value

(Prob > chi2) Test H0
Restricted

log likelihood
LR Statistic

chi2
P–value

(Prob > chi2)

Θ = –1 –1,368.202 417.560 0.000 λ = –1 –1,223.004 7.630 0.006
Θ = 0 –1,163.885 8.930 0.003 λ = 0 –1,221.815 5.250 0.022
Θ = 1 –1,225.002 131.170 0.000 λ = 1 –1,225.002 11.620 0.001
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Results of the number of wildfires

For the purpose of determining the functional form 
for the regression of wildfires, the Box-Cox test does 
not provide conclusive evidence of the superiority of 
any functional form. However, in order to compare the 

number of wildfires with the regression of the burned-
forest area ratio, the logarithmic model is selected. 
Also, this functional form is estimated to allow for 
comparability between all regressions. 

Following the results displayed in Table 5, the esti-
mation by OLS explains 78.60% of the variation of the 

Table 5. Econometric results for the regressions of the number of wildfires

OLS NBMR NBMR with FE NBMR with RE
Coef, P>t IRR P>t IRR P>t Coef, P>t

Dummy 2002 0.147 0.222 1.039 0.665 0.985 0.808 1.003 0.9650.116 0.092 0.063 0.063

Dummy 2003 –0.006 0.968 1.004 0.970 0.950 0.474 0.956 0.5020.147 0.110 0.068 0.065

Dummy 2004 0.067 0.526 1.077 0.351 1.088 0.165 1.088 0.1600.104 0.085 0.066 0.066

Dummy 2005 –0.099 0.552 1.004 0.965 1.160 0.027 1.134 0.0550.163 0.094 0.077 0.075

Dummy 2006 –0.894 0.000 0.602 0.000 0.674 0.000 0.653 0.0000.164 0.071 0.053 0.049

Dummy 2007 –1.366 0.000 0.370 0.000 0.320 0.000 0.328 0.0000.214 0.048 0.030 0.030

Dummy 2008 –2.155 0.000 0.223 0.000 0.218 0.000 0.227 0.0000.201 0.027 0.023 0.022

Dummy 2009 –1.289 0.000 0.405 0.000 0.379 0.000 0.376 0.0000.236 0.061 0.040 0.036

Dummy 2010 –1.625 0.000 0.333 0.000 0.365 0.000 0.345 0.0000.187 0.042 0.036 0.032
Summer average

rainfall
–0.430 0.002 0.990 0.000 0.994 0.000 0.994 0.0000.120 0.002 0.001 0.001

Summer máximum
temperature

1.696 0.031 1.022 0.576 0.972 0.074 0.981 0.1890.726 0.039 0.015 0.014
Ratio of

natural pasture
0.227 0.010 149.018 0.000 43.453 0.109 141.696 0.0000.079 213.364 102.163 185.066

People
Density

0.339 0.004 1.173 0.190 1.313 0.078 1.180 0.0150.104 0.143 0.203 0.080
Ratio of

Pinus pinaster
0.354 0.031 5.437 0.084 5.135 0.074 6.132 0.0000.151 5.331 4.705 2.838

Ratio of
equine specie

–0.201 0.227 0.005 0.257 0.035 0.163 0.004 0.0070.161 0.022 0.085 0.008
Ratio of

protected areas
0.253 0.042 3.276 0.060 4.334 0.209 4.072 0.0240.116 2.068 5.060 2.538

Agricultural
cooperatives

–0.110 0.363 1.012 0.167 1.010 0.421 1.015 0.0520.118 0.009 0.013 0.008

Intercept 3.662 0.138 12,259.780 0.000 1,775.902 0.000 1,391.861 0.0002.360 13,443.070 1,497.628 936.366
Number of

observations 190 190 190 190
F Statistic 107.240
Prob > F 0.000

R2 0.786
Ovesdispersion Analysis

Muhat 0.111 0.0000.015
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number of wildfires. In addition, the parameters are all 
jointly statistically significant. In the OLS results, 
temporal trends are also identified. Until the year 2005, 
the coefficients are not significant; however, from this 
year onwards, all yearly dummies are significant and 
negative. Therefore, from 2005 onwards, the wildfire 
occurrence diminishes with respect to 2001. Taking 
into account the climatological variables, the rainfall 
carries a significant and negative effect on the number 
of wildfires (-0.430). On the opposite, the maximum 
temperature is significant and positively related to 
wildfire occurrence (1.696). 

Some variables, such as the ratio of equines and 
the agricultural cooperatives do not have a significant 
relationship with the number of wildfires during 
2001-2010,  are not significant in the assessment of 
the wildfires using the OLS models. However, the 
rest of the socioeconomic variables, are significant 
and have positive effects over the wildfires occur-
rence. 

The number of wildfires is modelled by count data 
models. Therefore, overdispersion should be studied 
in order to select the best econometric model. Taking 
into account the results of Table 3, the data show over-
dispersion, and hence, the NBMR is selected to esti-
mate the number of wildfires. The Hausman test recom-
mends the use of RE to estimate the number of fires by 
the NBMR (Prob.>chi2=1.00).

Analysing the effects of the yearly variables, tem-
poral trends are found according to the NBMR results, 
both with FE or RE. In this way, since 2006, it is ob-
servable that the wildfire occurrence diminishes with 
respect 2001. However, the NBRM also detects a 
significant growth in wildfires in 2005 with respect to 
the baseline year. The OLS and NBMR models, with 
or without RE, demonstrate the presence of temporal 
trends in Galician wildfires.

Furthermore, the estimator of summer rainfall is 
significant and carries a negative effect on the number 
of wildfires (0.994). According to the estimation with 
RE, if this independent variable changes over time and 
between districts by one unit, then the average effect 
of the average summer rainfall over the number of 
wildfires is significant (0.944). Otherwise, the average 
of the maximum temperature during the summer is not 
significant to explain the wildfires according with the 
NBMR models.

In the NBMR models, the ratio of natural pasture, 
Pinus pinaster and protected areas are statically sig-
nificant. The effects of these variables on wildfire 
occurrence are positive. By analysing the IRR, if the 
ratio of natural pasture, the ratio of Pinus pinaster 
and the ratio of protected areas per landowner show 
an increase by one unit, then the number of wildfires 

increases by a factor of 149.018, 5.437 and 3.276, 
respectively. 

In addition, socioeconomic variables are significant 
in the NBRM with RE. Nevertheless, the remaining 
variables have different impacts on wildfire occurrence. 
The agricultural cooperatives and population density 
have a positive relationship with the occurrence of 
Galician wildfires. If these previous variables increase 
by one point, the rate of the number of wildfires would 
be expected to increase by a factor of 1.015 and 1.180, 
respectively, while holding all other variables constant. 
Furthermore, the ratio of equines has a negative rela-
tionship with wildfires occurrence. 

The summer average rainfall is significant in order 
to predict the wildfires occurrence. This is explained 
by the absence of raining, given that this increases the 
wildfire risk. Nevertheless, the summer maximum 
temperature is only significant in the OLS results. 
 

Discussion

Spatial patterns and temporal trends can be observed 
with graphical data representation. Furthermore, the 
spatial dependence of wildfires can also be determined 
by spatial statistics. Various econometric models are 
employed to assess the impact of socio-economic, cli-
matic and geographical variables, as well temporal and 
spatial effects. Following the econometric models em-
ployed, and in particular those from RE models, the 
number of wildfires and the affected area ratio are esti-
mated for each Galician forest districts in 2010. The 
estimations portrayed in Figure 10 show the actual data 
for both dependent variables and predictions. The data 
of these variables are distributed in quantiles and repre-
sent each district. In doing so, the geographical patterns 
of wildfire occurrence can be clearly differentiated in 
these maps. It is shown that the wildfire risk depends on 
the forest district; and as such, regulators should focus 
their forestry efforts on the areas in which the prediction 
of wildfires is higher. In other words, and for the area of 
study, public policy efforts should focus more closely 
on the southern rather than the northern districts.

In terms of the econometric results, it was found that 
the agro-forestry features are important factors given 
that the land cover is conditioned by this activity. The 
type of forest plantation, the livestock used in the farms 
or the land assigned to agricultural activity influences 
the wildfire occurrence. The ratio of equines is slo 
important in order to reduce the wildfire occurrence 
(Rigueiro et al., 2002; Pasalodos et al., 2009). This 
species grazes freely in the surrounding farm; fed 
mainly with grass, bushes or seeds; keeping the land 
cover cleaner. Thus, the wildfire risk diminishes where 
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progressive migratory flow from the rural to urban 
areas. Then, the wild land-urban density around to main 
areas is increasing. In addition, the new residents are 
not involved in the agricultural sector and they are not 
involved with forest production (Barreiro & Hermosil-
la, 2013). This generates worst environmental condi-
tions, causing an increase of wildfires (Herrero-Corral 
et al., 2012). Public policies may supervise the sur-
rounding environment of these areas and aware soci-
ety to avoid wildfire occurrence.

The types of forest covers are represented by the 
ratio of Pinus pinaster. The results show a positive 
influence on both, the ratio of burned-forest area and 
wildfires number. These results are related with the 
species characteristics because these are more inflam-
mable and the wildfires, when occurring, move faster 
than with other species. The preventive measures and 
supervision should also be incremented in these areas 
in order to avoid wildfires. 

Unexpectedly, the protected areas influence posi-
tively the occurrence of wildfires. This result may show 
the general rejection towards having protected lands in 
rural areas. This result could also imply an inadequate 
public policy to manage these areas against wildfires 
(Carroll et al., 2006). Therefore, the zooning of protec-
tion areas may be revised in order to identify the pos-
sible social and environmental factors that can be im-
proved when reducing management conflicts. These 
improvements will imply lower wildfire occurrence if 
these factors are corrected.

Figure 10. Estimation of wildfire occurrence in 2010. a) Actual ratio of burned area (%). b) Estimated rate of burned area (%). c) 
Actual number of wildfires. d) Estimated number of wildfires. 
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there are more equines than other livestock species. 
The presence of agricultural cooperatives also affects 
the wildfires occurrence. This happens because of the 
traditional agricultural management practices using 
fires. Nevertheless, the effect is the opposite for the 
burned area, because in general terms, the lands are 
better managed when the agricultural sector is more 
powerful in rural areas. 

We also find that the Pinus pinaster ratio has a 
positive influence on the occurrence of wildfires, be-
cause this species is pyrophyte, with wildfires spread-
ing more where Pinus pinaster are being planted. 
Protected areas could also be expected to have a nega-
tive relationship with wildfire occurrence; however the 
social rejection or ineffective protection measures could 
cause a positive influence. Furthermore, climatology 
variables condition the occurrence of wildfires, how 
they spread or the suppression efforts. Finally, the 
evolution of wildfires over time demonstrates high 
variability. This is the justifying reason why yearly 
dummy variables were included. 

In general terms, the population density is important 
in order to predict the wildfire occurrence. However, 
in some of the empirical models, results are not con-
clusive. For example, in the OLS with RE, this variable 
is not significant when explaining the burned-forest 
area ratio. The same happens  in the NBRM when 
analyzingthe wildfire number. In the remaining models, 
the population density is positively related to the oc-
currence of wildfires. This result is explained by the 
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Conclusion

This research provides evidence characterizing the 
wildfire occurrence in the agricultural sector in relation 
to the climatic conditions, the forest cover, the social 
context, and time and spatial patterns. A relevant 
finding is that the forest species and the farming 
systems condition the wildfire risk. Hence, public 
policies may mitigate the factors that affect the wildfire 
risk. In this way, the presence of equines and extensive 
agricultural practices should be promoted in order to 
reduce the wildfire risk. 

According to the main results, some guidelines could 
be developed as a reference for regional and local gov-
ernments to help in the fight of wildfires. In particular, 
public policies could regulate the quality and quantity 
of woodland made available, as well as the plantation 
of different species. These  regulatory agencies should 
also consider the geographical and spatial differences 
in the occurrence of wildfires in order to formulate 
better forest policies, and deal with possible “conta-
gion” effects across districts. 

Finally, we should remark that the current research 
has some limitations. In particular, additional varia-
bles would be desirable by employing more geo-
graphical disaggregated data, such as roads and infra-
structures. Unfortunately, such data are not currently 
available, although, they are expected to be in the near 
future. In spite of that, many of the obtained conclu-
sions could be applicable to other similar European 
areas, especially in depopulated rural areas. In par-
ticular, these main results could be implemented in 
the French Mediterranean basin (INSEE, 2015; PRO-
METHEE, 2015) and Portugal (INE, 2015), among 
others.

References

Aguado I, Chuvieco E, Borén R, Nieto H, 2007. Estimation 
of dead fuel moisture content from meteorological data 
in Mediterranean areas. Applications in fire danger as-
sessment. International Journal of Wildland Fire 16(4): 
390-397. http://dx.doi.org/10.1071/WF06136

Anselin L, 1995. Local Indicators of Spatial Association-
LISA. Geographical Analysis 27(2): 93-115. http://dx.doi.
org/10.1111/j.1538-4632.1995.tb00338.x

Anselin L, Syabri I, Kho Y, 2006. GeoDa: An Introduction 
to Spatial Data Analysis. Geographical Analysis 38 (1): 
5-22. http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x

Barreal J, Loureiro M, Picos J, 2011. Estudio de la inciden-
cia de los incendios en Galicia: una perspectiva socioec-
onómica. Revista Galega de Economía 20 (special issue): 
227-246.

http://dx.doi.org/10.5424/fs/2013223-04165
http://dx.doi.org/10.5424/fs/2013223-04165
http://dx.doi.org/10.1002/env.768
http://dx.doi.org/10.1007/s10651-007-0083-3
http://dx.doi.org/10.1017/CBO9780511811241
http://dx.doi.org/10.1017/CBO9780511811241
http://dx.doi.org/10.1526/003601106777789701
http://dx.doi.org/10.1526/003601106777789701
http://dx.doi.org/10.1093/ajae/aat087
http://dx.doi.org/10.1093/ajae/aat087
http://dx.doi.org/10.1016/j.ecolmodel.2008.11.017
http://dx.doi.org/10.1162/rest.90.1.37
http://dx.doi.org/10.1162/rest.90.1.37
http://www.eea.europa.eu/
http://www.eea.europa.eu/
http://www.eea.europa.eu/
https://geodacenter.asu.edu/
https://geodacenter.asu.edu/
http://www.gvsig.org
http://dx.doi.org/10.1071/WF06136
http://dx.doi.org/10.1071/WF06136
http://dx.doi.org/10.1071/WF06136
http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x


Forest Systems� August 2015 • Volume 24 • Issue 2 • e022

17Spatial and temporal effects of wildfires

Martínez A, Castillo F, Pérez A, Valcárcel M, Blanco R, 1999. 
Atlas climático de Galicia. Xunta de Galicia, Santiago de 
Compostela, Spain. 277 pp.

Martínez J, Vega-García C, Chuvieco E, 2009. Human-caused 
wildfire risk rating for prevention planning in Spain. 
Journal of Environmental Management 90(2): 1241-1252.
http://dx.doi.org/10.1016/j.jenvman.2008.07.005

Mercer DE, Prestemon JE, 2005. Comparing production 
function models for wildfire risk analysis in the wildland-
urban interface. Forest Policy and Economics 7: 782-795.
http://dx.doi.org/10.1016/j.forpol.2005.03.003

Meteogalicia, 2012. Informes Meteorolóxicos [online]. Me-
teogalicia, available in: http://www.meteogalicia.es/obser-
vacion/informesclima/informesIndex.action [17 July 2012].

MAGRAMA, 2008. Tercer Inventario Forestal Nacional 
1997-2007. Galicia. Ministerio de Medio Ambiente. Ma-
drid, España.

MAGRAMA, 2010. Red Natura 2000. Ministerio de Ag-
ricultura, Alimentación y Medio Ambiente. Dirección 
General de Calidad y Evaluación Ambiental y Medio 
Natural. Subdirección General de Medio Natural. Avail-
able at: http://www.magrama.gob.es/es/biodiversidad/
servicios/banco-datos-naturaleza/informacion-disponible/
rednatura2000_descargas.aspx  [17 July 2012].

Molano F, Rodríguez C, Ponte JM, 2007. Informe sobre 
investigación de incendios en Galicia. Verano 2006. 
Diputación de Coruña, A Coruña, Spain. 270 pp.

Moran P, 1948. The interpretation of statistical maps. 
Biometrika 35: 255-260.

Moreno R, Vayá E, 2000. Técnicas econométricas para el 
tratamiento de datos espaciales: La econometría espacial. 
Edicións de la Universitat de Barcelona. Barcelona 
(Spain). 156 pp.

Moulton BR, 1986. Random group effects and the precision 
of regression estimates. Journal of Econometrics 32: 385-
397. http://dx.doi.org/10.1016/0304-4076(86)90021-7

Neter J, Nachtsheim C, Kutner M, 1983. Applied linear re-
gression models. Richard D. Irwin, Chicago, USA. 547 pp.

Pasalodos-Tato M, Pukkala T, Rigueiro-Rodríguez A, 
Fernández-Núñez E, Mosquera-Losada MR, 2009. Opti-
mal management of Pinus radiata silvopastoral systems 
established on abandoned agricultural land in Galicia 
(north-western Spain). Silva Fenn 43(5): 831-845. http://
dx.doi.org/10.14214/sf.176

Pérez J, Delgado JL, 1995. Análisis del riesgo de incendio 
forestal en Galicia (Spain). Revista Agricultura y Sociedad 
77: 109-124.

Pew KL, Larsen CPS, 2001. GIS analysis of spatial and 
temporal patterns of human-caused wildfires in the tem-
perate rain forest of Vancouver Island, Canada. Forest 
Ecology and Management 140(1): 1–18. http://dx.doi.
org/10.1016/S0378-1127(00)00271-1

Prestemon JP, Pye JM, Butry D.T, Holmes TP, Mercer DE, 
2002. Understanding broadscale wildfire risks in a human-
dominated landscape. Forest Science 48(4): 685-693.

Preisler HK, Brillinger D.R, Burgan RE, Benoit JW, 2004. 
Probability based models for estimation of wildfire risk. 
International Journal of Wildland Fire 13(2): 133-142.
http://dx.doi.org/10.1071/WF02061

Herrero-Corral G, Jappiot M, Bouillon C, Long-Fournel M, 
2012. Application of a geographical assessment method 
for the characterization of wildland–urban interfaces in 
the context of wildfire prevention: A case study in western 
Madrid. Applied Geography 35(1): 60-70. http://dx.doi.
org/10.1016/j.apgeog.2012.05.005

IGE, 2012a. Información Territorial de Galicia (Spain) [on-
line]. Instituto Galego de Estadística, Available at: http://
www.ige.eu/web/mostrar_actividade_estatistica.jsp?idio
ma=gl&codigo=0101001 [17 July 2012].

IGE, 2012b. Banco de datos municipal [online]. Instituto 
Galego de Estadística, available at: http://www.ige.eu/
web/mostrar_paxina.jsp?paxina=002001&idioma=gl [17 
July 2012].

IGN, 2011. Base Cartográfica Nacional. Instituto Geográfi-
co Nacional. Available at: http://centrodedescargas.cnig.
es/CentroDescargas/catalogo.do#selectedSerie

IGN, 2011. Líneas Límite de la Base de datos de Límites 
Jurisdiccionales de España inscritas en el Área del Reg-
istro Central de Cartografía del IGN. Instituto Geográfico 
Nacional. Available at: http://centrodedescargas.cnig.es/
CentroDescargas [17 July 2012].

INE, 2015. Estatisticas territoriais (online). Instituto Na-
cional de Estatísitca (Spain), Available at: http://www.ine.
pt/xportal/xmain?xpid=INE&xpgid=ine_unid_territorial
&menuBOUI=13707095&contexto=ut&selTab=tab3[02 
March 2012].

INSEE, 2015. Données locales (online). Institut National de 
la Statistique et des Études Économiques (France). Avail-
able at: http://www.insee.fr/fr/bases-de-donnees/default.
asp?page=statistiques-locales.htm [02 March 2012].

Jones K, 1991. Specifying and Estimating Multi-Level Mod-
els for Geographical Research. Transactions of the Insti-
tute of British Geographers 16(2): 148-159. http://dx.doi.
org/10.2307/622610

King D, MacGregor C, 2000. Using Social indicators to 
measure community vulnerability to natural hazards. The 
Australian Journal of Emergency Management 15 (3): 
52-57.

Lavorel S, Flannigan M, Lambin E, Scholes M, 2007. Vulner-
ability of land system to fire: Interactions among humans, 
climate, the atmosphere, and ecosystems. Mitigation and 
Adaptation Strategies for Global Change 12(1): 33-53.
http://dx.doi.org/10.1007/s11027-006-9046-5

Lesage J, Kelley R, 2009. Introduction to Spatial Economet-
rics. CRC Press. Florida (EUA).  http://dx.doi.
org/10.1201/9781420064254

Long JS, Freese J, 2001. Regression models for categorical 
dependent variables using Stata. Stata Press Publication, 
Texas, USA. 288 pp.

Marey MF, Rodríguez V, Crecente R, 2007. Perfil del propi-
etario forestal individual en Galicia: objetivos y prácticas 
de gestión en el noroeste de la comunidad. Revista 
Galega de Economía 16 (1): 1-24.

MARM, 2012. Avance Anuario de estadística 2011 [online]. 
Ministerio de Medio Ambiente y Medio Rural y Marino 
de España, available at: http://www.magrama.gob.es/es-
tadistica/pags/anuario/2011/AE_2011_Avance.pdf [17 July 
2012].

http://dx.doi.org/10.1016/j.jenvman.2008.07.005
http://dx.doi.org/10.1016/j.forpol.2005.03.003
http://www.meteogalicia.es/observacion/informesclima/informesIndex.action
http://www.meteogalicia.es/observacion/informesclima/informesIndex.action
http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/rednatura2000_descargas.aspx
http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/rednatura2000_descargas.aspx
http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/rednatura2000_descargas.aspx
http://dx.doi.org/10.1016/0304-4076%2886%2990021-7
http://dx.doi.org/10.14214/sf.176
http://dx.doi.org/10.14214/sf.176
http://dx.doi.org/10.1016/S0378-1127%2800%2900271-1
http://dx.doi.org/10.1016/S0378-1127%2800%2900271-1
http://dx.doi.org/10.1071/WF02061
http://dx.doi.org/10.1016/j.apgeog.2012.05.005
http://dx.doi.org/10.1016/j.apgeog.2012.05.005
http://www.ige.eu/web/mostrar_actividade_estatistica.jsp%3Fidioma%3Dgl%26codigo%3D0101001
http://www.ige.eu/web/mostrar_actividade_estatistica.jsp%3Fidioma%3Dgl%26codigo%3D0101001
http://www.ige.eu/web/mostrar_actividade_estatistica.jsp%3Fidioma%3Dgl%26codigo%3D0101001
http://www.ige.eu/web/mostrar_paxina.jsp%3Fpaxina%3D002001%26idioma%3Dgl
http://www.ige.eu/web/mostrar_paxina.jsp%3Fpaxina%3D002001%26idioma%3Dgl
http://centrodedescargas.cnig.es/CentroDescargas
http://centrodedescargas.cnig.es/CentroDescargas
http://www.ine.pt/xportal/xmain%3Fxpid%3DINE%26xpgid%3Dine_unid_territorial%26menuBOUI%3D13707095%26contexto%3Dut%26selTab%3Dtab3
http://www.ine.pt/xportal/xmain%3Fxpid%3DINE%26xpgid%3Dine_unid_territorial%26menuBOUI%3D13707095%26contexto%3Dut%26selTab%3Dtab3
http://www.ine.pt/xportal/xmain%3Fxpid%3DINE%26xpgid%3Dine_unid_territorial%26menuBOUI%3D13707095%26contexto%3Dut%26selTab%3Dtab3
http://www.insee.fr/fr/bases-de-donnees/default.asp%3Fpage%3Dstatistiques-locales.htm
http://www.insee.fr/fr/bases-de-donnees/default.asp%3Fpage%3Dstatistiques-locales.htm
http://dx.doi.org/10.2307/622610
http://dx.doi.org/10.2307/622610
http://dx.doi.org/10.1007/s11027-006-9046-5
http://dx.doi.org/10.1201/9781420064254
http://dx.doi.org/10.1201/9781420064254
http://www.magrama.gob.es/estadistica/pags/anuario/2011/AE_2011_Avance.pdf
http://www.magrama.gob.es/estadistica/pags/anuario/2011/AE_2011_Avance.pdf


Jesús Barreal and María L. Loureiro

Forest Systems� August 2015 • Volume 24 • Issue 2 • e022

18

Stata, 2010. 10. 1. Data analysis and statistical software. 
StataCorp LP. Available at: www.stata.com

Vega-García C, Chuvieco E, 2006. Applying local measures 
of spatial heterogeneity to Landsat-TM images for predict-
ing wildfire occurrence in Mediterranean landscapes. 
Landscape Ecology 21: 595–605.  http://dx.doi.
org/10.1007/s10980-005-4119-5

Vega JA, 2007. Impacto de los incendios sobre suelo y veg-
etación forestales en Galicia y desarrollo de una selvi-
cultura preventiva. In: Por unha nova cultura forestal 
fronte aos incendios (Díaz-Fierros F, Balboa X, Barreiro, 
XL, eds.). Consello da Cultura Galega y Fundación Caixa 
Galicia, Santiago de Compostela, Spain. 87-126 pp.

Vilar L, Martín MP, Martínez J, 2008. Empleo de técnicas 
de regresión logística para la obtención de modelos de 
riesgo humano de incendio forestal a escala regional. 
Boletín de la A.G.E. (Spain). 47: 5-29.

Wimberly MC, Cochrane MA, Baer AD, Pabst, K, 2009. 
Assessing fuel treatment effectiveness using satellite 
imagery and spatial statistics. Ecological Applications 19: 
1377–1384. http://dx.doi.org/10.1890/08-1685.1

Xunta de Galicia, 2011. Pladiga 2011. Consellería de Medio 
Rural. Dirección Xeral de Montes, Santiago de Com-
postela, Spain. 123 pp.

PROMETHEE, 2015. Forest fires database for Mediterranean 
area in France. Promethee. Available at: http://www.pro-
methee.com/ [02 March 2012].

Rigueiro A, Mosquera MR, Villari JJ, 2002. Reducción del 
riesgo de incendios forestales mediante el pastoreo del 
caballo gallego de monte. Cuadernos de la Sociedad Es-
pañola de Ciencias Forestales 14.

Rogalski J, 1999. Decision-making and management of 
dynamic risk. Cognition, Technology & Work 1(4): 247-
256. http://dx.doi.org/10.1007/s101110050021

Romero-Calcerrada R, Barrio-Parra F, Millington JDA, 
Novillo CJ, 2010. Spatial modelling of socioeconomic 
data to understand patterns of human-caused wildfire 
ignition risk in the SW of Madrid (central Spain). Eco-
logical  Modelling 221(1):  34-45.http:/ /dx.doi.
org/10.1016/j.ecolmodel.2009.08.008

SECF (Sociedad Española de Ciencias Forestales), 2010. 
Situación de los bosques y del sector forestal en España 
[online], available in: http://www.secforestales.org/web/
images/inforestal2010.pdf [17 July 2012].

Sineiro F, 2006. As causas estructurais dos incendios forestais 
en Galica. In: Os incendios forestais en Galicia (Díaz-
Fierros F, Baamonde P, eds). Consello da Cultura Galega, 
Santiago de Compostela, Spain. 77-92 pp. 

www.stata.com
http://dx.doi.org/10.1007/s10980-005-4119-5
http://dx.doi.org/10.1007/s10980-005-4119-5
http://dx.doi.org/10.1890/08-1685.1
http://www.promethee.com/
http://www.promethee.com/
http://dx.doi.org/10.1007/s101110050021
http://dx.doi.org/10.1016/j.ecolmodel.2009.08.008
http://dx.doi.org/10.1016/j.ecolmodel.2009.08.008
http://www.secforestales.org/web/images/inforestal2010.pdf
http://www.secforestales.org/web/images/inforestal2010.pdf

