
Introduction

Forest planning deals with different types of forest
management decisions at various scales. One very
typical characteristic of forest planning is the long-
term nature of the decision outcomes. This can cause
serious difficulties since decision making with long
time horizon involves various sources of uncertainty.
Uncertainty can be considered as lack of information.
This means that the decisions have to be made without
exact information about the parameters affecting them,

or about their outcomes. Definitions for the term un-
certainty are many, although a general definition is still
lacking (Kangas and Kangas, 2004).

Uncertainty has also been classified in many ways.
One option is to divide uncertainty into aleatoric (or
statistical) and epistemic (or systematic) uncertainty.
Aleatoric uncertainty is something that we can descri-
be, for example, with a statistical measure, such as a
distribution, but it cannot be reduced with additional
information. Epistemic uncertainty, on the other hand,
can be reduced with additional measurements. These
two classes have also been called variability and igno-
rance (Ferson and Ginzburg, 1996). Uncertainty may
also be classified into metrical (measurement uncer-
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tainty), structural (complexity of systems), temporal
(temporal variability) and translational uncertainty (in
explaining uncertain results) as in Rowe (1994). Walker
et al. (2003) defined uncertainty as a continuum bet-
ween absolute determinism and total ignorance, with
the following classification: determinism, statistical
uncertainty, scenario uncertainty, recognised ignorance
and total ignorance.

Risk can be defined as the known probability of so-
me, often unwanted, occurrence (Willet, 1901). In the
framework of forest planning, risk has been defined as
the expected loss due to a particular hazard for a given
area and reference period (Gadow, 2000). An expected
loss may be calculated as the product of the damage and
its probability. Risk is therefore characterized by presen-
ting probabilities of occurrence that are known. How-
ever, as these probabilities are often set in a subjective
way, it becomes difficult to differentiate between risk
and uncertainty (Moss and Schneider, 2000). Uncertain-
ty can be related to the existence of a risk, or to the lack
of knowledge, or even to the degree of realization of one
event (for instance regeneration) that does not need to
mean risk. Even in the cases where the difference bet-
ween uncertainty and risk might not be clear enough, it
is advisable to integrate them into the planning process.

Within this framework, the most prominent sources
of risk and uncertainty affecting decision making are:

— Uncertainty due to forest inventory errors; the
present state and current properties of the forests are
not known exactly.

— Uncertainty due to growth prediction errors; the
future growth of forests cannot be predicted exactly
since the growth models include errors and forest
growth varies naturally in a stochastic fashion.

— Uncertainty due to the performance of timber
markets; the future prices of timber assortment cannot
be known perfectly, yet the timber prices have a con-
siderable effect on the economic profits

— Uncertainty in the preferences of the decision
maker (DM) —decision makers cannot state their exact
preferences and priorities— or even to the evolution
of the preferences of the forest owner, which may not
be constant all over the planning period.

— Risks due to natural hazards, including: snow-
and wind damages, forest f ires, pathogens, insects,
drought and flooding

As it has been previously mentioned, the time-ho-
rizon in forest planning decisions is typically quite long,
“long” referring commonly to tens and even up to
hundreds of years (Annex 1), and therefore the deci-

sions have long-term consequences. Bad decisions can
have undesired effects that span over long periods of
time. Decisions are based on predicted developments
and outcomes, which are in general the more uncertain
the longer the time-horizon is. When making decisions
under uncertainty, the decision maker may end up with
decisions that are not optimal, or not even feasible.
Although many times these sources of risk and uncer-
tainty have been ignored, they should be integrated into
the planning process. By ignoring these sources of
uncertainty and risk, the forest manager will achieve
suboptimal solutions, in the best case, if not bad alter-
natives (Pukkala, 1998; Thorsen and Helles, 1998). In
the best case scenario, i.e. no taking uncertainties into
consideration without achieving worse alternatives, it
is not known beforehand what the outcome will be
(Pukkala, 1998). Non optimal decisions can lead to
losses in the utility of the decision maker, for instance
losses in the economic return (Burkhart et al., 1978;
Hamilton, 1978; Pukkala, 1998; Eid, 2000; Duvemo
and Lämås, 2006). Understanding and considering the
various uncertainties can help to avoid the non-optimal
and infeasible decision.

Forest planning decision making is often aided by
Forest Planning Systems (FPS), which are typically fo-
restry-specific model-based decision support systems
(DSS), and, therefore it would be advisable to consider
also uncertainties in the FPS. Reckhow (1994) noted
that “recognition of uncertainty does not prevent
decision making, but provides an additional criterion
for selecting between alternatives and deciding what,
if any, additional information is needed. In this context,
uncertainty assessment adds value to the DSS result”.
Mowrer (2000) also motivated the recognition of the
various uncertainties by stating that “including all the
sources of uncertainty in all decision analyses might
not be a feasible task. However, it is wise to be aware
of as many of them as possible”. Moreover, Mowrer
(2000) also pointed out that regarding the various
capabilities of DSSs, uncertainty assessment is the
most poorly understood and implemented. As an exam-
ple, Lahdelma et al. (1998) stated that according to
their experiences “the decision makers in public po-
litical decision situations prefer methods which do not
require them to express their preferences explicitly but
rather describe the potential actions and their conse-
quences in an appropriate form, in order to allow the
final decision to be made by themselves”. In this kind
of situation there is clearly a need for tools to take the
decision maker’s uncertainty, into account.
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Pukkala (1998) stated that all results and outputs
from forest planning calculations and predictions of
forest development should be accompanied by an esti-
mate of its reliability or its uncertainty. In this way the
uncertainty associated with the outputs could be taken
into account in the decision making. Ascough II et al.
(2008) pointed out that “the type or quality of the un-
certainty assessment, and the scientific tools employed
in that assessment, must be decided pragmatically as
part of the infrastructure (including cost) and system
dynamics of the decision-making process”. This requi-
res that the aspect of uncertainty is considered already
when designing the forest planning DSS.

Although there are several sources of uncertainty
and the importance of considering all of them in the
decision making process has already been discussed,
the present study is only focused on uncertainty sour-
ces related to forest planning and decision support sys-
tems. Recent studies have analyzed and reviewed the
topic of modeling hazards and risks in order to integra-
te them in the planning process (Hanewinkel et al.,
2011) and the decision making techniques employed
to assess risk and uncertainty due to climate change
(Yousefpour et al., 2012). Besides, the objective of this
article is to review different methodologies and approa-
ches that have been used in forest planning, as well as
in different areas of knowledge, serving as a guide for
forest managers, stakeholders and DSS developers to
choose the most suitable method to account for risk
and uncertainty in forest planning. Moreover, the in-
clusion of risk and uncertainty in decision support sys-
tems is considered and analyzed. In addition, this re-
view presents innovative methodologies that may have
been employed in other areas of knowledge but fo-
restry.

Material and methods

Firstly, several hundred (1935) of articles were iden-
tified in a search in Science Direct using the following
keywords: forestry, planning, risk, uncertainty and op-
timization. From them, 170 articles were further revie-
wed, categorized and evaluated. The categories inclu-
ded information regarding the sources of uncertainty
analyzed in the articles, and the dimensions of the
problems addressed (the dimensions analyzed in this
article are found in the Annex 1). The dimensions in-
clude the temporal scale, the spatial context, spatial
scale, the participation process, the objectives dimen-

sions and the goods and services addressed. Note that
readers are assumed to have knowledge about the diffe-
rent techniques mentioned in this review. A compre-
hensible description of each technique is therefore out
of the scope of this article (see Hillier and Liebermann,
1990; Taha, 1992; Burke and Kendall, 2005, for refe-
rences).

What sources of uncertainty should be
considered in forest planning and FPS?

As Mowrer (2000) stated, it is not feasible to consi-
der all uncertainties in a DSS or in forest planning
either. One way of selecting the uncertainties that need
to be considered is to study the negative effects that
occur when uncertainties are ignored (this is referred
in this article as inoptimality losses).

The economic inoptimality losses due to forest in-
ventory errors in harvest scheduling problems have
been examined using cost plus loss analysis. The avera-
ge inoptimality losses have been ranging from under
1% of stand-level Net Present Value (NPV) to around
6-7% (see for example Eid, 2000; Holmström et al.,
2003; Eid et al., 2004; Holopainen and Talvitie, 2006;
Duvemo and Lämås, 2006; Borders et al., 2008; Du-
vemo, 2009; Islam et al., 2009; Mäkinen 2010).

Inoptimality losses due to growth prediction errors
have been so far studied using cost-plus-loss analysis
only by Pietilä et al. (2010) and by Mäkinen et al. (2012).
Both studies concluded that the inoptimality losses
varied between 3.3% and 11.6% of the stand-level NPV
and depended on the inventory interval. This suggests
that the effect of growth prediction errors in harvest
scheduling planning problems is at least as significant
as the effect of forest inventory errors. Similar results
were observed by Mäkinen (2010) when comparing
the effects of various uncertainties in stand-level NPV
estimates, although not in inoptimality losses.

Stochastic variation in timber prices can also affect
the economic profits of forest management considera-
bly (e.g. Taylor and Fortson, 1992; Leskinen and Kangas,
2001). Holopainen et al. (2010) concluded that the
effect of stochastic timber prices on stand-level NPV
predictions was considerably less than the effects of
inventory and growth model errors.

Natural hazards, such as high winds and forest fires
cause damages which in turn lead to economic losses.
Especially forest f ires can also have other drastic
effects than just damaged forests; forest fires can in-
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flict expensive damage to buildings and infrastructure
and even cause human casualties. Forest fire risk has
been included in forest planning in several ways (e.g.
González et al., 2005; González-Olabarría et al., 2008;
Hyytiainen and Haight, 2010; García-Gonzalo et al.,
2011a; Ferreira et al., 2011, 2012), and in fact forest
fire risk is one of the few examples where uncertainty
and risk is considered in forestry DSSs (Kaloudis et
al., 2005; Bonazountas et al., 2007). In Europe during
1950-2000, wind storms were responsible for 53% and
forest fires for 16% of forest damages (Schelhaas et
al., 2003). In North-America, the economic effects of
wind damages have been studied by Peterson (2000).
Wind damages and forest management practices under
the risk of wind damage have been studied, for exam-
ple, by Lohmander (2000), Zeng et al. (2007) and Forssell
(2009).

Another aspect one should consider when choosing
the uncertainties to account for in forest planning and
in the development of a FPS, is the available informa-
tion about the nature of uncertainty. For instance, forest
inventory errors associated with the various inventory
methods have been studied extensively, and thus data
availability is quite good [for compartment field inven-
tory, see Poso (1983), Laasasenaho and Päivinen (1986),
Kangas et al. (2004), and for Airborne Laser Scanning,
see Naesset (2004), Kaartinen and Hyypppä (2008),
Packalen (2009)]. On the other hand, data on forest
growth model errors may not be that readily available
and collecting such data, including repeated measure-
ments from permanent sample plots, can be very ex-
pensive. Information on past timber prices should be
easy to obtain for different areas and timber assort-
ments around the world. Data about natural hazards
can also be difficult, or at least expensive, to obtain.
It is important to note that exact information regarding
the uncertainties is not necessary required, as subjec-
tive expert estimates about the uncertainties can be
used instead.

The signif icance of various uncertainties is also
affected by the type of the decision problem and the
spatial and temporal scales. These should also be
considered when deciding which of the uncertainties
are accounted for in the decision making process as they
may differ depending on the decision problem and the
spatio-temporal scale. For example, errors in growth
predictions may be important in tactical and strategic
forest planning but may be even ignored in operational
forest planning. Uncertainties can also have joint
effects and decreasing the effect of some uncertainty

does not necessarily decrease the overall uncertainty
notably.

Walker et al. (2003) proposed a general framework
for describing the various uncertainties in model-based
DSSs, called uncertainty matrix. The uncertainty in
the matrix is defined as a three dimensional concept
defined by: the location in the analysis, the level of un-
certainty, and the nature of the uncertainty. These types
of tools would be very helpful in describing and un-
derstanding the various uncertainties in complex sys-
tems and also for communicating the uncertainties
between groups of experts.

Although it is generally agreed that considering
uncertainties in DSSs, and also in forestry context, is
of importance, the actual implementations of uncer-
tainty considerations in FPSs are few. The number of
alternative approaches and methods for considering
uncertainty is considerable, so the lack of implementa-
tions must lie somewhere else.

General uncertainty and risk consideration
methods

Before analysing the methods for integrating risk
and uncertainty in forest planning, it is also interesting
to introduce different uncertainty theories (Kangas and
Kangas, 2004). These uncertainty theories have been
used in decision analysis and the adoption of one or
other theory depends on the characteristics of the un-
certainty analyzed. The main approaches are the proba-
bilistic framework, Bayesian probability theory, the
evidence theory, fuzzy set theory and possibility theory.
The traditional approach for analysing uncertainty is
the classical probability theory, and especially Kolmo-
gorov probability theory (Williams, 1991). In the pro-
babilistic framework the probabilities are presented by
means of probability distributions, which may be
continuous or discrete, and uncertainty is considered
as random variability. In contrast the Bayesian theory
(Carlin and Louis, 2000) deals with subjective proba-
bilities that describe prior beliefs about the values of
the parameters. Evidence theory is similar to this latter
approach, the main difference being that the subjective
beliefs are needed here to obey the probability rules.
Fuzzy set theory (Zimmermann, 1985) accounts for the
uncertainty derived from the vagueness in defining the
criteria, preferences, etc.

Among the ways to deal with risk and uncertainty,
one preliminary option is to prioritize the use of adap-
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tive planning (McLain and Lee, 1996; Jacobson and
Thorsen, 2003; Zhou et al., 2008; Leskinen et al.,
2009) instead of anticipative of fixed prescriptions. In
adaptive planning, the state of the system is observed
intermittently and decisions are made on the basis of
these observations. For example, the timing of harvest
and the post-harvest state depend on the stand and
market conditions at the time when the decision is
made. Examples of adaptive studies are the inclusion
of stochastic stumpage prices, stochastic stand dyna-
mics (Kao, 1984) or both (Kaya and Buongiorno, 1987;
Lohmander, 1987) and stochastic fire (Ferreira et al.,
2011, 2012). Anticipatory models are used for deriving
optimal decisions for the whole planning period in ad-
vance. The solution takes into account the uncertainties
over time. This method is preferable to adaptive ones
when the state of the system is not observable after a
decision is made, or when meaningful feedback rules
are difficult to identify. Kao (1982) is an example of
anticipatory model using stochastic dynamic pro-
gramming when stand volume growth is stochastic.
Fixed policies (i.e. anticipatory models) have been ba-
sed on silvicultural experience supplemented by mea-
surements or on optimization models. When optimiza-
tion models are used they are mostly of a deterministic
type, but stochastic optimization methods have also
been applied to obtain fixed policies (e.g. González et
al., 2005; Liang et al., 2006; González-Olabarría et
al., 2008).

In the present study methods that have included risk
and uncertainty are grouped in different categories de-
pending on the characteristics of the planning problem
addressed, e.g. the spatial scale, the temporal scale and
the decision makers involved in the planning process.
At the spatial scale three different levels are identified
in forest planning, namely stand level, forest/landscape
level and regional level. The stand level is focused only
on the dynamics of a single stand and its management
policies. At the forest/landscape level the complexity
grows and more objectives and constraints have to be
accounted for. The highest hierarchical level is the
regional level. At this level forest planning must focus,
not only in forest issues but also on topics such as
social policies, industry interests or sustainability. The
next consideration is on regard to the temporal scale
and also three different categories are analyzed:
strategic, tactical and operational planning. Depending
on the decision makers involved, decisions can be
individual or with more than one decision maker (e.g.
collegial). Different methodologies are studied atten-

ding also to the nature of the problem (i.e. which are
the objectives pursued with the planning process as
well as on the decision makers involved).

Based on these general categories, some other diffe-
rences can be analysed, i.e. the difference between
stochastic and deterministic models and the way to use
them (Boychuck and Martell, 1996; Hellander, 2009).
According to Beaudoin et al. (2007) a fundamental
property of deterministic models is that all required
data are supposed to be known with certainty, whereas
in the case of stochastic models data is commonly ex-
pressed by means of probability distributions. More-
over, in the case of catastrophic events an interesting
differentiation is the one between endogenous and
exogenous risk and the advantages of considering one
over the other (Thorsen and Helles, 1998; González et
al., 2005; González-Olabarría et al., 2008; Pasalodos-
Tato and Pukkala, 2008; Pasalodos-Tato et al., 2009;
García-Gonzalo et al., 2011a; Ferreira et al. 2012).
Endogenous risks are those which are related to the
state of the stand and therefore may be influenced by
management, for instance the probability of occurrence
of a f ire or the post-f ire mortality (González et al.,
2005; Pasalodos-Tato et al., 2010; García-Gonzalo et
al., 2011b).

Classification of methods to deal with risk
and uncertainty

Stand level

The stand is the first meaningful unit in forest planning
(Valsta, 1993) and at the stand level forest planning
aims to solve the possible problems related to the ma-
nagement of a single stand. Although the stand level
seems to be a too simplistic approach in forest planning,
it is very useful, not only to support forest planning at
the landscape level but also to help small forest owners
to develop the management of their stands optimally
(Pasalodos-Tato, 2010). Forest planning at the stand
level mostly involves the resolution of problems in a
long-term horizon, i.e. policies for the optimal mana-
gement of individual stands and finding optimal thinning
schedules and rotation lengths. In a time-scale classifi-
cation it corresponds to strategic forest planning. Se-
veral sources of uncertainty can take place, e.g. uncer-
tainty related to the expected growth of the trees, un-
certainty regarding the fluctuations in market condi-
tions and timber prices, the occurrence of a catastro-
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phic event, changes in the preferences of the forest owners
regarding the objectives aimed with the planning and
even variations in social preferences that might change
the trends in land use and therefore affect the stand
management. Several methods have been used to inte-
grate risk and uncertainty at this level (Table 1).

The most widely employed methods to optimize
stand level management in strategic planning comprise
non-linear programming and dynamic programming.
When dealing with risk and uncertainty, the applied
methods are usually stochastic, although deterministic
methodologies have also been employed by weighting
every expected outcome by its probability of occurren-
ce (Reed, 1984; Thorsen and Helles, 1998; Englin et
al., 2000; Pasalodos-Tato and Pukkala, 2008; Pasalo-
dos-Tato et al., 2009). One of the most common metho-
dologies employed to integrate uncertainty and risk is
the scenario analysis technique (Rockafellar and Wets,
1987; Valsta, 1992). This approach consists in the crea-
tion of different scenarios. A scenario is defined as one

realization over time of the stochastic processes
(Valsta, 1992) and may be directly integrated in the
objective function. By assigning probabilities (risks)
to the scenarios, expected values could be used in the
objective function. This method has been employed by
many authors to integrate classical sources of uncer-
tainty and risk: uncertainty in yearly growth and
catastrophes (Valsta, 1992; Pukkala and Miina, 1997),
in the success or occurrence of a certain event, e.g. the
regeneration of a stand (Miina and Heinonen, 2008),
stochastic behavior of timber prices (Pukkala and Miina,
1997), attitude towards risk (Pukkala and Kangas,
1996) and preferences of the decision maker (Pukkala
and Miina, 1997).

One variation of the scenario technique is the
stochastic simulation. This method is rather flexible
and can be adapted to different optimization techni-
ques. They key point of the methodology is to define
the problem as a stochastic simulation model (Lohman-
der, 2007). Some authors have implemented the simu-
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Table 1. Different methods used to integrate risk and uncertainty at stand level

Strategic/tactical level

Optimize harvest scheduling (rotation lenght, thinning regimes)

Nonlinear programming

Simulation (deterministic) Catastrophic events Thorsen and Helles (1998), Pasalodos-Tato and Pukkala
(2008), Pasalodos-Tato et al. (2009, 2010) 

Simulation (stochastic) Catastrophic events Pukkala (1998) Moykkynen et al. (2000), González et al.
(2005), González-Olabarría et al. (2008), Hyytiainen and
Haight (2010)

Sensitivity analysis (scenario Uncertainty in yearly Valsta (1992), Pukkala and Miina (1997)
analysis, stochastic optimization) growth and catastrophic

events

Stochastic timber prices Pukkala and Miina (1997)

Attitude towards risk Pukkala and Kangas (1996)

Preferences of the DM Pukkala and Miina (1997)

Dynamic programming

Deterministic approach Catastrophic events Martell (1980)

Stochastic dynamic programming Catastrophic events Kao (1982)
(scenario analysis technique, Uncertainty in growth Kao (1984); Kooten et al. (1992)
stochastic simulation)

Preferences of the DM Couture and Reynaud (2008)

Stochastic prices Lohmander (2007)

Markov chains (scenario analysis Uncertainty in growth Kaya and Buongiorno (1987), Buongiorno (2001)
technique, stochastic simulation) Uncertainty in growth Lin and Buongiorno (1998), Lohmander (2000), Insley and

and prices Rollins (2005), Rollin et al. (2005), Zhou et al. (2008)



lation by means of random number generators (Gonzá-
lez et al., 2005), probability distributions (Pukkala,
1998) or using also Monte Carlo techniques (Kaya and
Boungiorno, 1987). The method has been widely em-
ployed to integrate risk (Möykkynen et al., 2000;
González et al., 2005; González-Olabarría et al., 2008;
Hyytiäinen and Haigth, 2010) and uncertainty (Kaya
and Boungiorno, 1987; Pukkala and Miina, 1997) in
forest planning.

Optimization techniques that have been commonly
applied with scenario analysis technique or stochastic
simulation are non-linear programming and direct
search methods. A classic direct search method widely
used has been the one developed by Hooke and Jeeves
(1961). Recently new direct search methods called po-
pulation based methods have been tested (Pukkala, 2009).

Dynamic programming techniques have also been
employed in some of the first studies related to risk of
fire (Martell, 1980) in a deterministic way. In this study
stochastic dynamic programming was used to deal with
risk when finding optimal management alternatives to
optimize stocking level and rotation length: Kao (1982)
presented a study dealing with uncertainty in growth
predictions due to fire occurrence or storms where they
used f ixed probabilities of occurrence. This model
would be applicable for these risk factors if the proba-
bilities of their occurrence and the associated growth
are known. This method has also been used under
growth uncertainty (Kao, 1984; Kooten et al., 1992) and
to set optimal fire management strategies (McCarthy
et al., 2001). This technique has also been used to find
optimal harvest timing when timber, carbon benefits
and the forest owner’s preferences are considered
(Couture and Reynaud, 2008). In the case of stochastic
prices this method was also successfully applied [see
Lohmander (2007) for references]. Recently, Ferreira
et al. (2011, 2012) have used stochastic dynamic prog-
ramming to determine the optimal stand policy (i.e.
the fuel treatment, thinning schedules and rotation
length) under risk of wildfire. They considered proba-
bility of wildfire and potential damage as endogenous
(i.e. dependent on the state of the stand).

Markov decision process is another technique
commonly employed to deal with risk and uncertainty
in stand growth and prices (Kaya and Buongiorno,
1987; Lin and Buongiorno, 1998; Lohmander, 2000;
Buongiorno, 2001; Insley and Rollins, 2005; Rollin et
al., 2005; Zhou et al., 2008).

The next temporal scale the tactical level, which dri-
ves medium term decisions. The tactical level is a brid-

ge between strategic level and operational level. Tac-
tical planning at stand level usually deals with thinning
and/or final cutting scheduling problems. The forest
manager needs to decide which area of the stand will
be clear cut or thinned and when. The uncertainty in-
volved at the tactical level is usually related to sto-
chastic prices as well as on stochastic growth. Risk of
a catastrophic event is also important. The methods
employed to deal with risk and uncertainty at the tac-
tical level are similar to the ones employed at the stra-
tegic level.

At the operational scale (short-term decisions) stand
level forest planning has to deal with issues such as
choosing the harvest units that need to be cut in short
periods (e.g. a week), the machinery that might be used,
to schedule the transportation and the way the trees ha-
ve to be bucked (Epstein et al., 2007). Although stand
level planning at both the tactical and the strategic level
do not include spatial restrictions or area assignment,
at the operational level this type of constraints may be
needed and therefore the methodology employed varies
from the previously described ones. In cases such as
the selection of the areas to be cut in a specific periods,
linear programming techniques (LP), even at the stand
level, are applied. Nevertheless this issue is much more
important at the forest level and, therefore, it will be
explained with more detail when dealing with land-
scape level planning problems. Another issue is the
location of the machinery in the forest; these problems
may be solved by combining GIS with heuristic search.
To set the tree bucking model is another typical pro-
blem at this level, generally solved with LP although
fuzzy logic, dynamic programming and heuristics have
also been employed as resolution methods (Sessions,
1988; Sessions et al., 1989; Kivinen and Uusitalo,
2002; Kivinen, 2004). Uncertainty at this level would
be related to climatic conditions or to variation in tim-
ber prices or in transportation costs, for instance. The
way to deal with these sources of uncertainty is the
same as when integrating stochasticity in LP, heuristics
and dynamic programming, although no examples have
been found. This may be due to the fact that the time
horizon considered at the operational level is so short
that the potential sources uncertainty or risk involved
are not considered to be important. The f irst two
techniques (LP and heuristics) will be explained in
more detail when assessing the forest level problem.

At the stand level usually the forest owner is the only
decision makers involved in the process. Nonetheless,
an important source of uncertainty is the uncertainty
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regarding the preferences of the decision maker and
his attitude towards risk. Usually, the way to account
for the uncertainty related to the decision makers’
preferences has been the scenario technique (Pukkala
and Kangas, 1993; Pukkala, 1998). There are also other
types of uncertainties, for instance, those related to the
capability of the DM to express his/her preferences
(fuzzy programming). Various approaches have been
developed for decision support in situations where
multiple utilities need to be considered, generally called
Multi Criteria Decision Making (MCDM). So far most
of the applied MCDM methods are based on Multi
Attribute Utility Theory (MAUT). Many of the MCDM
methods can handle uncertainties to some extent and
many of them have been applied in forest planning con-
text. One of the widely applied approaches is the Ana-
lytic Hierarchy Process AHP (Saaty, 1980; Leskinen
and Kangas, 1998). Another MCDM method capable
of handling uncertainties is Stochastic Multiobjective
Acceptability Analysis SMAA (Lahdelma et al., 1998).
Outranking methods, such as ELECTRE and PROME-
THEE are MCDM method in which the uncertainties
of the decision variables can be accounted for using
fuzzy relations (Kangas et al., 2001). For instance,
PROMETHEE has been employed recently to evaluate
the impact of different hazards on different forest
management alternatives in several European regions
(Jactel et al., 2012).

Forest/landscape level

At the forest level the main objective is to find the
best combination of stand treatment schedules in order
to achieve a general objective for the whole forest
rather than maximizing/minimizing an objective func-
tion for each of the stands (Heinonen, 2007). Forest
planning usually includes landscape goals, such as
patterns of old forest patches or cutting areas quanti-
fied by landscape metrics, which make problems diffi-
cult to solve (Heinonen, 2007). Therefore forest planning
may comprise non-spatial and spatial problems. Non-
spatial means that a treatment of a stand has no effect
on the treatment of other stands due to their location.
Examples of this kind of problems are the requirement
of an even-flow of timber, minimum or maximum har-
vesting levels, maximum total regeneration area, mini-
mum growing stock value and maximization of carbon
stocks. These are the typical goals at the strategic level.
Non-spatial problems can be efficiently solved using

LP models (Table 2). A problem with LP is that it does
not guarantee the integrity of the stands, i.e. the op-
timal solution will include partially treated stands. If
the integrity of each stand must be preserved, mixed
integer programming (MIP) can be used instead of
linear programming. LP and MIP are deterministic
methods, but there are several ways to include uncer-
tainty in LP and MIP: (i) expected value approach or
mean value process is a simple and deterministic me-
thod; (ii) scenario analysis presents an improvement
over the latter approach since each scenario problem
is treated as a linear programming model; (iii) sensi-
tivity analysis; (iv) stochastic programming, (sto-
chastic linear programming and stochastic integer pro-
gramming). The mean value process (Reed and Errico,
1986; Gunn and Rai, 1987) has been employed by Reed
and Errico (1986) to manage timber supply when fire
occurs. In this article the expected burned area was
subtracted from each age class in each time period and
added to the youngest age class in the following period
and solved the mean-value problem. Scenario analysis,
or simulation, in which alternative scenarios are eva-
luated, was employed by Klenner et al. (2000) and
Gadow (2000). Peter and Nelson (2005) used this
methodology to estimate harvest schedules and profi-
tability under the risk of fire disturbance.

There are also genuinely stochastic programming
techniques (see Sahinidis (2004) for a brief explanation
of the techniques): (i) programming with recourse, that
includes techniques such as stochastic integer pro-
gramming (as well as stochastic linear programming),
stochastic non-linear programming and robust sto-
chastic programming; (ii) probabilistic or chance-cons-
trained programming; (iii) fuzzy mathematical pro-
gramming that includes flexible programming and
possibilistic programming.

Programming with recourse is a modeling technique
to explicitly consider uncertainty in optimization mo-
dels, and it also gives the opportunity to adjust the deci-
sions to the information that is received after a random
event or scenario has occurred, which is referred as
“recourse”. Boychuck and Martell (1996) introduced
the concept of scenarios in a forest-level analysis of
forest f ires with the implementation of stochastic
programming with fixed recourse. To account for the
uncertainty in the modeling process, stochastic pro-
gramming integrates it through scenarios of random
events with a given probability of occurrence. This
technique was employed to assess uncertainty in timber
yield (Hoganson and Rose, 1987; Eriksson, 2006) and
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Table 2. Different methods used to integrate risk and uncertainty at forest planning level 

NON SPATIAL
Maximization of sustained harverst volume flow, harvest sheculee, the maintenance of biodiversity values

STRATEGIC

LP, MIP

Expected value approach Catastrophic events Reed and Errico (1986), Gunn and Rai (1987)
Scenario analysis Catastrophic events Klenner et al. (2000), Gadow (2000), Peter and

Nelson (2005)
Sensitivity analysis
Stochastic LP

Stochastic programm

Programming with recourse Catastrophic event Boychuck and Martell (1996) Gassmann (1989)
Uncertainty in timber yield Hoganson and Rose (1987) and Eriksson (2006)

Probabilistic or chance-constrained Uncertainty in timber yield Pickens et al. (1991), Weintraub and Vera (1991),
programming Weintraub and Abramovich (1995), Hof et al. (1996)

Uncertainty on production Hof and Pickens (1991)
requirements
Uncertainty in timber demand Palma and Nelson (2009)

Fuzzy mathematical programming Uncertainty in timber yield Pickens and Hof (1991) and Bare and Mendoza (1992)
Vague objectives and constraints Mendoza and Sprouse (1989), Pickens and Hof

(1991), Bare and Mendoza (1992), Mendoza et al.
(1993), Tecle et al. (1994),  Hof et al. (1995),  Ells
et al. (1997)

SPATIAL

TACTICAL

Heuristic
Scenario analysis technique Catastrophic event Meilby et al. (2001)
Scenarios of climate change Uncertainty in climatic conditions García-Gonzalo et al. (2008)
Risk as an objective variable Risk of wind-throw minimization Zeng et al. (2007)

(and maximization)
Effect of minimizing mean risk Heinonen et al. (2009)
on the forest management

Wildfire simulator (FARSITE) Uncertainty in fuel management Kim et al. (2009)
and the heuristic great deluge 
algorithm
HERO+ Scenario approach (to integrate risk Pukkala and Kangas (1996)

in timber prices ad in level of tree 
growth + Priority function 
(preferences and the attitude 
toward risk)

Markov chain processes

Climate change Spring et al. (2005)
Reserve site selection Sabbadin et al. (2007)
Risk of forest fire and wind effects García and Sabbadin (2001), Spring and Kennedy

(2005), Forsell et al. (2011)
Maintenance of wildlife Spring et al. (2008)

OPERATIONAL

LP, IP and heuristics techniques + stochasticity
Location of areas to be harvested, location of machinery
Transportation problems



stochastic f ire losses in sustainable timber supply
(Gassmann, 1989; Boychuck and Martell, 1996). These
two latter approaches are the same that were already
explained for introducing stochasticity at the stand
level when employing nonlinear techniques. Another
way to integrate stochasticity in linear programming
is by the post-optimal or sensitivity analysis. It was
employed by Pickens and Dress (1988) to study the
effect of stochastic technological coefficients in forest
level timber management models.

Probabilistic or chance-constraint programming is
a stochastic programming technique where constraints
with at least one random coefficient are modeled as
probabilistic statements and are required to hold a mi-
nimum probability. It is similar to stochastic pro-
gramming in the sense that the probability distributions
of uncertain coefficients are assumed to be known, but
no recourse or correcting actions are explicitly assu-
med. This approach has been applied to deal with ran-
domness in timber growth (Pickens et al., 1991; Wein-
traub and Vera, 1991; Weintraub and Abramovich,
1995; Hof et al., 1996) and when there is uncertainty
on production requirements (Hof and Pickens, 1991).
Robust optimization has also been employed in harvest
scheduling problems when volume and demand are
randomly uncertain (Palma and Nelson, 2009). It is a
modeling methodology combined with computational
tools to process optimization problems in which the
data set is uncertain and is only known to belong to so-
me uncertainty set (Ben-Tal and Nemirovski, 2002).

Related to the fuzzy set theory, that accounts for the
uncertainty derived from the vagueness in defining the
criteria, fuzzy linear and goal programming (GP) tech-
niques have also been employed to deal with risk and
uncertainty. Mendoza and Sprouse (1989) proposed a
two-stage approach for forest planning and developed
a fuzzy model for more flexible and robust generation
of alternatives. In this case, uncertainty arose from im-
precise coefficients. Hof et al. (1986), Pickens and Hof
(1991) and Bare and Mendoza (1982) compared classi-
cal and fuzzy models for describing optimal harvest
over time. They found that, by relaxing the constraint
of non-declining harvest volume over time, the net pre-
sent value could be significantly increased. Mendoza
et al. (1993) developed a fuzzy multiple objective LP
model for forest planning that accommodated uncer-
tainty in the objective function by making coefficients
interval-valued. Tecle et al. (1994) developed an inter-
active fuzzy multicriterion decision model in which
the decision maker is allowed to search the frontier of

efficient solutions instead of being confronted with a
uniquely preferred solution. Bare and Mendoza (1992)
and Pickens and Hof (1991) focused only in timber
yield. Ells et al. (1997) were the first ones in combining
the existence of vague objectives and constraints, as
Tecle et al. (1994) and Pickens and Hof (1991) did, and
imprecise coeff icients as in Mendoza and Sprouse
(1989), Bare and Mendoza (1992), Hof et al. (1996)
and Mendoza et al. (1993). Ells et al. (1997) also mo-
deled imprecise coeff icients as fuzzy numbers and
their approach gave more importance to the effect of
the various sources of uncertainty in land allocation.

Spatial optimization can be divided into two cate-
gories: spatial optimization and spatially explicit
optimization. Spatial optimization refers to the me-
thods that capture spatial relationships between diffe-
rent land areas (e.g. neighborhood relations of stands)
in the process or maximizing or minimizing and objec-
tive function subject to resource constraints. This is
different from spatial explicit optimization (Hof and
Haight, 2007), which simply involves variables that
are spatially def ined and includes no spatial rela-
tionships. Spatial objectives require consideration of
the relative locations of stand in optimization calcu-
lations. When spatial objectives are included in the op-
timization process we talk about endogenous planning.
Spatial problems can be dispersing or connectivity
problems (Öhman, 2001; Heinonen, 2007).

Spatial restrictions or objectives are typically con-
sidered at the tactical and operational levels. At the
tactical forest level, the operations or the harvest vo-
lumes defined in the strategic stage need to be alloca-
ted in the terrain. These spatial restrictions have the
form of adjacency constraints, habitat continuity, etc.
For both the spatial optimization problems (i.e. con-
sidering adjacency constraints) and the spatial explicit
optimization (i.e. choice variables that are spatially
defined) the methodologies used have been: integer
programming (IP), mixed integer programming (MIP)
(Rebain and McDill, 2003), heuristics (Öhman and
Eriksson, 1998; Öhman, 2000; Öhman and Eriksson,
2002; González-Olabarría and Pukkala, 2012) and
dynamic programming (Borges et al., 1999; Hoganson
et al., 2003; Hoganson et al., 2005). When using these
methodologies there are different ways to include un-
certainty and risk.

One of the main difficulties in planning harvesting
operations in tactical planning is the stochasticity of
future timber sale prices. The problem is therefore a
Stochastic Programming (SP) that problem (see Birge
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and Louveaux (1997) for a specialised book on this
subject). In spatial explicit optimization, Stochastic
Integer Programming (SIP) approaches must be used.
Recently, Alonso-Ayuso et al. (2012) presented a me-
thodology to deal with uncertainty in prices and future
wood demand in a tactical forest planning aiming at
determining the optimal harvest and access road cons-
truction policy that will maximize expected net profit
and satisfy the constraints The paper presents a multi-
stage stochastic integer programming model which is
solved using a branch-and-fix coordination approach.

Heuristics have been employed in combination with
other approaches to integrate different catastrophic
risks. Pukkala and Kangas (1996) developed a method
to integrate risk and attitude toward risk in forest
planning at the tactical level combining scenario
approach (to integrate risk in timber prices ad in level
of tree growth), a priority function (to compute the pre-
ferences and the attitude toward risk) and a heuristic
optimization algorithm, HERO (Pukkala and Kangas,
1993), to solve the problem. Meilby et al. (2001) inclu-
ded risk of wind in the objective function by means of
scenario technique and then used simulated annealing
to f ind optimal rotation length without even-flow
cutting targets. Zeng et al. (2007) included risk of
wind-throw minimization (and maximization) conside-
ring maximum cutting areas. García-Gonzalo et al.
(2008) included uncertainty in climatic conditions by
means of scenarios of climate change and then used
heuristics to find optimal management plans for each
scenario and to analyze the effect of not adapting ma-
nagement plans to climate change. In this paper they
used even-flow cutting constrains but did not include
spatial constrains. Heinonen et al. (2009) also used
risk of wind-throw as an objective variable in the opti-
mization to analyze the effect of minimizing mean risk
on the forest management. Kim et al. (2009) employed
a wildfire simulator (FARSITE) and the heuristic great
deluge algorithm to optimize the pattern of fuel mana-
gement. Another methodology to integrate risk and
uncertainty at both strategic and tactical planning is
Markov decision processes. As well as on the stand le-
vel case, Markov decision processes have also been
employed to deal with uncertainty at the forest level
(Sallnäs and Eriksson, 1989; Buongiorno, 2001).
Forsell et al. (2011) included the risk of wind damage
in long-term forestry management with the object of
maximizing the expected net present value of the forest
accounting for the spatial relationships of the stands.
Other Markov decision process applications at forest

level have dealt with climate change (Spring et al.,
2005), reserve site selection (Sabbadin et al., 2007),
risk of forest fire (Spring and Kennedy, 2005; Garcia
and Sabbadin, 2001), maintenance of wildlife (Spring
et al., 2008) and wind effects (Forsell et al., 2011).

In regard to the operational planning at the forest
level the main problems are location of areas to be
harvested, location of machinery, transportation pro-
blems, etc. These problems could be solved by inclu-
ding stochasticity to LP, IP/MIP and heuristic techni-
ques. Uncertainty related to this type of problem comes
from the availability of wood and from variation in tim-
ber prices, as well as from weather and terrain condi-
tions (e.g. impossibility to harvest in swampy areas).
However previous literature has not been found on
these topics.

Regional level

At the top of the spatial-scale hierarchy is the re-
gional level. At this level it is important not only to
allocate the resources optimally to obtain the higher
utility from the forest but also to develop certain
policies involving as many stakeholders as possible in
the process (Ananda and Herath, 2003): forest owners,
industry sector, environmental groups, etc. As an
example, an important issue at both the strategic and
the tactical level are the implementation of timber
supply chain. Timber supply chain is a good example
of planning at the regional level. It contains the three
temporal planning levels that we are dealing with. At
the strategic level the main aim is to develop a good
configuration of the road network for the region and
to obtain sustainable harvest levels; at the tactical le-
vel the main issue is to decide the material flows
(Beaudoin et al., 2007), while at the operational level
day to day decisions are involved.

At the tactical level, the multiproduct supply chain
planning is an important issue (Mitra et al., 2008). In
this type of problems the most widely employed me-
thodologies are stochastic programming, fuzzy mathe-
matical programming and probabilistic programming
or chance constraint programming. This latter approach
is interesting because it focus on the system’s ability
to meet feasibility in an uncertain environment. The
reliability is expressed as a minimum requirement on
the probability of satisfying the constraints.

At the operational level the most common approa-
ches have been the scenario/multiperiod based approaches

292 M. Pasalodos-Tato et al. / Forest Systems (2013) 22(2), 282-303



and the probabilistic programming. It is interesting the
approach of Ierapetritou et al. (1996) that combined
stochastic programming with the value of perfect in-
formation. With this methodology the expected profit
and future feasibility is balanced with DM’s attitude
towards risk.

Nevertheless, at the regional level the most widely
analyzed uncertainties currently are the ones related
to climate change. An extended example to deal with
this type of uncertainty is the Integrated Assessment
Approach (IA). This type of approach is characterized
by having an added value compared to insight derived
from disciplinary research. Global change has impulse
the development of a new series of IA models; how-
ever, this topic is far beyond the scope of this study.

Forestry DSSs involving uncertainty 
and risk considerations

Most of the forest planning or related DSSs that
actually implement some kind of uncertainty conside-
rations are tools for analyzing and managing different
risks, such as forest fires, pests and other disturbances.
Thus, they do not include decision aid components.
The only example found is the SADfLOR v ecc 1.0 DSS
developed in Portugal (García-Gonzalo et al. Sub-
mitted). This modular DSS includes a process-based
growth and yield model capable of predicting growth
under climate change conditions. Thus, multiple clima-
te change scenarios may be taken into account. In addi-
tion, it includes a module that allows the generation of
formulations in LP, MIP and GP. It also includes a meta-
heuristic solution technique (i.e. Simulated Annealing).
Examples of fire management DSSs these are Wildfire
Destruction Danger Index WFDDI (Kaloudis et al.,
2005), which utilizes fuzzy set theory and DSS for
managing forest f ire casualties (Bonazountas et al.,
2007), where the uncertainty considerations are based
on Monte Carlo simulation. Intensive and costly spruce
budworm outbreaks in Eastern Canada led to the de-
velopment of Spruce Budworm Decision Support Sys-
tem SBW DSS (MacLean et al., 2001), which calcula-
tes the marginal timber yield utilities for protecting
against budworm outbreaks. SBW DSS uses various
scenarios with different outbreak and defoliation le-
vels, which can be considered as uncertain and have
to be decided by experts. LANdscape DIsturbance and
Succession model (LANDIS) is a tool for assessing
forest succession and disturbances at landscape-level

(Mladenoff, 2004; Scheller et al., 2007). LANDIS in-
cludes a number of stochastic processes and can be
used for uncertainty considerations by applying Monte
Carlo simulation and scenario analysis (Xu et al.,
2005). Other forest planning DSSs with some type of
uncertainty considerations might exist, but the amount
relative to the total number of FPSs is very small.

Innovative approaches

In this section recent approaches to deal with uncer-
tainty and risk in forest planning are presented. Most
of the methodologies presented here have been found
in studies that assess uncertainty in different planning
areas, i.e. chemical engineering, species conservation,
etc. However, since uncertainty and risk are issues that
require special attention in any type of planning, they
can be adapted and used in forestry planning problems.
Three different groups of innovative approaches have
been considered depending on (i) the methodology em-
ployed to solve the planning problem, (ii) the nature of
uncertainty and (iii) the way to characterize uncertainty.

The first group of recent approaches is related to
those methodologies that have not been commonly em-
ployed in forest planning but show great potential to
be implemented in the future. For instance, stand level
problems when risk is involved, can be solved by new
methodologies of population-based direct-search me-
thods (Pukkala, 2009), i.e. are differential evolution
(Storn and Price, 1997), particle swarm optimization
(Kennedy and Everhart, 1995), evolution strategy
(Beyer and Schwefel, 2002) and the Nelder and Mead
method or polytope search and amoeba search (Nelder
and Mead, 1965). As these methods only refer to the
optimization technique, the way to integrate risk is the
same as with other direct search methods. Another
optimization technique that has not been commonly
used at the stand level, are heuristics. Some heuristics,
i.e. random ascent, simulated annealing, tabu search,
threshold accepting, genetic algorithms, have great po-
tential to be employed for solving stand level problems
(Bullard et al., 1985). To be able to utilize heuristics
with continuous variables it is necessary to make some
modifications. Uncertainty and risk are integrated in
the same way as they were integrated when using heu-
ristics at the forest level. A new approach has been de-
veloped in last years (Heinonen et al., 2007; Packalén
et al., 2011). In this method the forest is divided into
raster cells, so-called dynamic-units, and they are used
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in optimization as management units instead of using
predefined stand compartments.

The second group of innovative approaches is the
one related to the nature of uncertainty. Due to the mul-
tifunctionality of forest and the growing involvement
of society in forest management, uncertainties coming
from the preferences of the decision makers must be
considered. Sometimes the DM is not able to quantify
his or her preferences; in this case fuzzy set theory
(Kangas et al., 2008) must be applied. In other occa-
sions DM cannot or does not wish to express their pre-
ferences about different criteria. In this case stochastic
multicriteria acceptability analysis (SMAA) is requi-
red. When using a priori approaches in objectives pro-
blems the DM has to set his preferences for the various
objectives without knowing the tradeoffs among them.
This limitation can be solved with a posteriori approach:
when objectives conflict it may be useful to identify a
set of Pareto-optimal or efficient solutions (Tóth et al.,
2006; Tóth and McDill, 2008). Knowing the set of
efficient solution can help the DM to understand the
trade-offs between the competing objectives. This
method is called the efficient frontier method and it is
very helpful because it is not necessary that the deci-
sion maker has to define his preferences beforehand.
When the DM knows beforehand which the conse-
quences of a given decision are, he has tools to decide.
Risk-eff icient frontier has also been employed as a
decision tool that can be used to understand the trade-
offs between profit and risk.

Based on the portfolio technique, a new method has
been widely developed in recent years: robust portfolio
model. The portfolio technique is based on the fact that
when limited resources are available, different projects
must be combined in order to maximise the return and
minimise the risk. The robust portfolio model also allows
the inclusion of different sources of uncertainty, i.e.
uncertainty in preferences of the DM, uncertainty in
projects performances, uncertainty related the constraints.
Including all these sources of uncertainty the method is
able to generate a set of feasible portfolios. This method
has been employed recently in forest planning (Liesiö et
al., 2007) showing great potentialities.

The third category of proposed approaches deals
with the way to assess uncertainty. Traditional methods
are sensitive to uncertainty characterization, i.e. they
need to characterize uncertainty in an explicit way in
order to be solved. In general, this is a difficult task.
To try to solve this shortcoming, different techniques
from other fields have been analised (Eggenberg et al.,

2011). For instance, a method based on conservation
management studies rises up and seems very helpful
to be used in forest planning. This method is the infor-
mation-gap theory (Ben-Haim, 2001). It addresses the
question of how much uncertainty can be tolerated be-
fore our decision would change. It assesses the robust-
ness of decisions in the face of severe uncertainty.
Different management decisions may result when un-
certainty in utilities and probabilities are considered.
Information-gap theory consists in three components:
the dynamics model, the performance parameter and the
uncertainty model. This method has been successfully
employed in species conservation management (Regan
et al.,2005; Moilanen et al., 2006) and for analyzing
the profitability of mixed forests (Knoke, 2008).

Another method that tries to overcome the short-
comings derived from the way to characterise uncer-
tainty is Uncertainty Features Optimisation (UFO)
(Eggenberg et al., 2008b). Solutions computed with a
model involving an explicit uncertainty set are sen-
sitive to errors in the uncertainty characterization. The
UFO framework overcomes these drawbacks by using
an implicit modeling of the uncertainty. The advanta-
ges are that no uncertainty set characterization is re-
quired, saving the modeling effort and protecting against
potential errors, and the complexity of the resulting
problem is of same order than the original problem.

A very interesting approach is the “option analysis”.
The novelty of this methodology is that it is completely
different from previous approaches; it presents uncer-
tainty as an opportunity and not as a threat. It is based
on “real options” (Neufville, 2003). This term refers
to elements of the system that provide rights, instead
of obligations, to achieve some goal or activity. The
option analysis consists on a set of procedures for cal-
culating the value of options, and specifically of real
options, which are the elements of the system that
provide flexibility.

With the concept of flexibility a new point of view
rises up: uncertainty is not a threat but an opportunity
in the sense that it gives value to options. Flexibility
provides the opportunity but not the obligation to mo-
dify the system to adapt it to the changing environment
(Cardin and Neufville, 2008). One option to obtain
benefits from uncertainty is by incorporating flexibi-
lity when designing a system (Cardin et al., 2007),
trying to seek for Flexible Design Opportunities
(FDO). It is important not only to identify but also to
value these FDO, and there are multiple ways to do it
(Cardin and Neufville, 2008). Among the techniques
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that have been employed to identify FDO, the interview
method seem to be an applicable methodology to in-
corporate certain sources of uncertainty (wood prices,
land use trends, etc.) into the forest planning problem.
Screening is also another suitable technique, especially
those screening methods that are based on optimiza-
tions to identify FDO. This method screens the diffe-
rent design options by combining the design variables
in many different ways until a design that maximizes
value under certain constraints is found (Cardin and
Neufville, 2008). Regarding the methods that value
FDO, there are different methodologies that can be
applied to forest planning: decision-tree methods (that
comprise decision analysis, binomial lattice and enu-
merative technique) and design transition methods. In
the first group decision analysis and enumerative tech-
nique considered all the possible combination of solu-
tion while binomial lattice reduces the combinatorial
space by assuming path interdependence and path
recombination. The design transition method finds the
design that minimizes lifecycle cost under various sce-
narios of uncertainty. These methods could be useful
when managing stands with low site indexes where it
is not worthy to make great investments.

Both uncertainty and flexibility provide great oppor-
tunities to the design of successful forest management
plans, although very few of the presented techniques
have been applied to forest planning problems so far.

Obstacles in taking uncertainty into
account in forest planning and DSSs

Although the concepts of uncertainty and risk and
their effects in forest planning decision making have
been studied quite extensively, the practical implemen-
tations are still very rare in FPSs. Maybe one of the
fundamental reasons is that an agreement on the ge-
neral definition and correct theoretical framework for
uncertainty is yet lacking (Kangas and Kangas, 2004).
As a result, the whole concept of uncertainty can be
well understood in the research community, but not so
much among the practical forest planning community.

The methodology for taking uncertainty into account
in DSSs has been widely analysed studied extensively
and lot of approaches and algorithms have been deve-
loped. However, the methods for formulating decision
problems involving uncertainty are typically quite
complicated and hard to explain for non-specialist
(Kangas and Kangas, 2004). This definitely is a hin-

drance to the implementation of the methods, both in
research and in practice.

One of the most obvious problems with many of the
methods for taking uncertainty into account in decision
making is the problem of technical implementation.
Some of the approaches for considering uncertainty
lead to problem definitions in which the uncertainty
space is huge (Sahinidis, 2004). This leads to very
large-scale optimization problems and the solving may
not be a trivial task. Eriksson (2006) noted that stochas-
tic optimization problems tend to be significantly lar-
ger than deterministic ones, which limits the use of the
approach. Scenario analysis, which is technically fairly
straightforward to implement, can be very time-consu-
ming, which hinders its application (Koutsoukis et al.,
2000). Forsell (2009) tested two different stochastic
scenario models for mitigating wind damages in Swe-
dish forests. He noticed that the model grows exponen-
tially with the number of stands, polynomially with the
number of time periods in the first model, and expo-
nentially with the number of time periods in the second.

Various types of difficulties exist in methods for op-
timization under uncertainty. One such problem in
robust optimization is that the errors are assumed to
be uniformly distributed, which denies the use of
information about the probability distribution of these
coefficients (Palma and Nelson, 2009). Robust portfo-
lio modeling has been tested with problems of relative-
ly small scales and the applicability to larger scale pro-
blems is still to be defined (Liesiö et al., 2007). Based
on these experiences, there certainly exists a trade-off
between relative simplicity and increased complexity
when uncertainties are ignored or considered. So far
the decisions about considering or ignoring uncertainty
have generally been in favor of the simplicity.

Another obstacle in taking uncertainty and risks into
account is the knowledge about the uncertainties and
risks. Some of the uncertainties are fairly well known,
such as inventory errors for some of the most widely
used inventory methods. This, however, is not the case
everywhere and some of the uncertainties are not ade-
quately known. For example, the errors in forest growth
models are not always well-known. Moreover, the pro-
bability distributions of the various risks are commonly
not known, and need to be approximated. The uncer-
tainties associated with future timber prices are based
on historical price information and the future price
developments are affected by so many unknown factors
that the assumed uncertainty can be considered to be
uncertain. Another good example of uncertainties that
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are difficult, or even impossible, to define are found
in planning problems where some of the decision va-
riables are so-called “non-timber variables”, such as
scenic beauty, recreational values, sustainability or
biological diversity (Kangas and Kangas, 2004). In
addition, the past and present uncertainties may well
change in the future, as was noted by Pukkala (1998).

The preferences of the decision-maker, such as the
risk attitude, are also difficult to describe in a mathe-
matical programming problem (Kangas and Kangas,
2004). Kurttila et al. (2009) commented on Pukkala’s
(1998) scenario approach, which considered uncertain-
ties in timber prices, forest growth and decision maker
preferences, that it “involves the decision-maker di-
rectly specifying the mean and standard deviations, as
regards the importance of the objective variables”. In
decision making under uncertainty, the subjective att-
itude of the decision maker, although difficult to des-
cribe, has a fundamental role (Yager, 2004).

Many of the MCDM methods are capable of consi-
dering various uncertainties, but they too are not
without their deficiencies when used in practice. Many
of the methods suffer from diff iculties in the inter-
pretation of the results. For example, the results of va-
rious outranking methods have been noticed to be very
diff icult to interpret. Multi Attribute Utility Theory
(MAUT) —based applications often suffer from pro-
blems in handling uncertain information (Kangas et
al., 2001), but other problems have been observed as
well. Defining the risks and uncertainties precisely
may be too difficult task for the decision makers, in
this case non-industrial private forest owners, as was
noted when applying a MAUT-based risk consideration
in fire management planning (Teeter and Dyer, 1986).

The obstacles for uncertainty considerations dis-
cussed previously have been more or less technical or
related to diff iculties in practical implementations.
However, other kinds of obstacles for taking uncer-
tainty into account can also be found. One such obsta-
cle is in the attitudes towards uncertainty among the
people acting as the decision makers. In some situa-
tions the mere existence of uncertainty might be an
unfavorable fact. Mowrer (2000) stated that “certainly,
no resource manager wants to stand up in a public
meeting and admit that they are not quite sure of the
exact outcome of a proposed activity”.

In other situations the whole concept of uncertainty
might be unfamiliar and vague to the decision maker.
The concepts and terms related to uncertainty might
be obvious to analysts and scientists, but unclear to

non-experts. Ascough II et al. (2008) emphasized that
it would be important to develop an appropriate risk-
based performance criteria that are understood and
accepted by a range of disciplines.

In some decision situations, the existence and nature
of the various uncertainties might be known, but the
effects of the uncertainties are not considered as too
big of a problem. For example, the expected economic
losses due to given risk or uncertainty might be consi-
dered insignificant, or less than the costs of taking the
uncertainty into account. This, of course, depends quite
a bit on the decision maker and the decision problem
in question. As Mowrer (2000) pointed out, the overall
level of acceptable uncertainty in a given decision-ma-
king situation is highly subjective. However, if one is
to decide whether some uncertainty is worth taking
into account or not, the uncertainty and its effects
should be known.

Conclusions

The literature review shows that there is multitude
of reasons for considering uncertainty in forest planning.
The number of different approaches has shown an
important increase in last years. However, the selection
of one alternative over another is not an straightforward
decision, it would depend on several factors, for instan-
ce the scale of the planning process, the type of the
problem, the nature of uncertainty, etc. The decision
maker should be aware of the different existing metho-
dologies in order to choose the one that better fits to
his/her requirements.

Different methods have been developed in order to
assess risk and uncertainty in DSSs. However, it is very
seldom that the uncertainties are actually considered
in FPSs. In order to enhance the inclusion of uncer-
tainty considerations into practice, certain aspects need
to be considered.

First of all, it is necessary to have a good under-
standing of uncertainties and their effects. In this sense,
an effort needs to be done in developing models that
are able to predict the effects of different sources of
uncertainty and risk: inventory error models, growth
error models, stochastic timber price models, risk mo-
dels for natural hazards and so on. Secondly, there
should be a motivation for implementing uncertainty
considerations. We should have a clear vision about
what are the uncertainties that we could and should
consider, and what can we gain by considering the
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uncertainties and making better decisions. This requi-
res knowledge about the expected losses that are due
to the various sources of uncertainty.

If we actually decide to consider some given un-
certainty in our DSS, we need to select methods and
tools that are suitable for the decision problem in
question and that are sufficiently easy to implement
and use. Extremely important is to find ways to commu-
nicate the uncertainties to the decision makers. Pre-
ferably the information on the uncertainties should not
increase the amount of information the decision ma-
kers need to consider significantly. One solution to this
would be to integrate the uncertainty considerations
into the DSSs so that it is implicitly considered in the
decision variables, and the decision maker need not
worry about that.

As a final conclusion, uncertainty is something we
should take into account in forest planning decisions,
and the difficulties in the implementation of the un-
certainty considerations are nothing that cannot be sol-
ved with some effort.
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Appendix I. Dimensions definitions

Temporal scale 

— Long term (strategic) management planning. Planning
horizon extending over more than 10 years. It may include
planning periods of more than 10 years. 

— Medium term (tactical) management planning. Plan-
ning horizon extending from 2 to 10 years. It may include
planning periods of more than one year. 

— Short term (operational) management planning. Plan-
ning horizon extending over one year or less. Typically it
will include planning periods of one month or less. 

Spatial context 

— Spatial with neighborhood interrelations. The inter-
actions of decisions made in neighboring stands (or other
areal units) are of importance, i.e. a decision made in one
stand may 1) constrain decisions on neighboring stands or
2) influence the outcome of a decision made in its neighbors
(e.g. some outcomes may not be measured in a per hectare
basis) and . Examples are systems where there is a maxi-
mum harvest opening or where outcomes such as types (and
amounts) of edge (borders between stands) are considered
to address habitat quality or biodiversity concerns. 

— Spatial with no neighborhood interrelations. We are
concerned with the location of forest operations and yet it
is assumed that a decision made in one stand does not cons-
train decisions on neighboring stands and does not influen-
ce the outcome of a decision made in its neighbors (all out-
comes may be measured in a per hectare basis). 

— Non spatial. Stands may be aggregated into strata or
analysis units without consideration to their mutual loca-
tion. There is no concern with locational specificity and with
neighborhood interrelations. 

Spatial scale 

— Stand level. Homogeneous unit according to ecolo-
gical, physiographic and development features.

— Forest level. Forest landscape with several stands that
belong together for a common purpose. 

— Regional/national level. A set of landscapes that may
be managed each to address different objectives. 

Parties involved 

— A single decision maker makes the decision on his/her
own, e.g. the forest owner. 

— One or more decision makers have the power to deci-
de. In addition, there can be other parties with no formal de-
cision-making power that are influenced or may influence
the decision (stakeholders). 

Objectives dimension 

— Single. The management planning problem addresses
one and just one objective.

— Multiple. The management planning problem addres-
ses two or more objectives, any pairs of which could be con-
flicting, complementary or neutral with respect to their con-
tributions.

Goods and services dimension 

— Market non wood products. The management plan-
ning problem addresses the supply of non wood products
that are traded in the marked (fruits, cork,…).

— Market wood products. The management planning
problem addresses the supply of wood products that are tra-
ded in the marked (roundwood, pulpwood, biomass,…).

— Market services. The management planning problem
addresses the supply of services that may be traded in the
market (recreation, hunting, fishing,…).

— Non market services. The management planning pro-
blem addresses the supply of services that typically are not
traded in the marked (public goods, aesthetics, water, bio-
diversity). 
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