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Abstract

Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass
allocation in early growth traits of Pinus radiata D. Don.

Area of study: Seedlings of 69 families of P radiata belonging to five different sites in Central Chile, ranging from
coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to
watering.

Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which
seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits
by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot
dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded.
Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed.

Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass
to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots
at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local
landrace of P. radiata in Chile originating from contrasting environments possess distinct morphological responses
to water deficit which in turn leads to phenotypic plasticity.

Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas,
selecting those with high root:shoot ratio.

Key words: early testing; environmental interaction; ontogeny; plasticity index; water stress.

ability of a genotype to alter its morphology and phy-
siology in response to changes in the environmental
conditions) (Bradshaw, 1965; Nicotra et al., 2010),
which allows species to grow in a range of environ-

Introduction

Plant species introduced outside their native ranges
may face very different environmental conditions than

those in their native habitats. Soil properties, hydrolo-
gy, or growing season can all differ. Successful esta-
blishment and subsequent spread depends on its ability
to tolerate and adapt to the new environmental scena-
rios and selective pressures. One way plants will respond
to these changes is through environmentally induced
shifts in phenotype, i.e. phenotypic plasticity (the
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ments (Corcuera et al., 2010). Differences in the envi-
ronmental heterogeneity have been postulated to con-
duct to divergences in plasticity between the genotypes
adapted to stable versus changing habitats (e.g. Balaguer
etal.,2001). It is well known that native plants from sites
with contrasting soil and climatic differences develop
phenotypic plasticity (Calamassi et al., 2001; Zhang et

Abbreviations used: choice experiment (CE or CEs); conditional logi (CL); contingent valuation (CV or CVs); independently and
identically distributed (IID); independence of irrelevant alternatives (IIA); multinomial probit model (MNP); random parameters
logit model (RPL); status quo (SQ).
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al.,2004; Lei et al., 2006; Merchant et al., 2007). This
has also been observed in introduced species with
a limited number of generations in their new envi-
ronment (Danusevicius and Persson, 1998), which is
possible because phenotypic plasticity can potentiate
rapid evolutionary change (Behera and Nanjundiah,
2004).

Radiata pine (Pinus radiata D. Don) plantations
comprise 75 percent of the Chilean forest industry base,
earning foreign currency on the order of US$ 5 billion
in exports (INFOR, 2010). The rapid growth of the
plantations (15 to 36 m?* ha™! year™) (Toro and Gessel,
1999) has been a key factor in the mass plantation of
this species. Radiata pine was introduced in Chile du-
ring the 1890s. It was initially established in the city
of Concepcidn (Camus, 2006), and after faster tree
growth compared to the growth in its native California
was recognized, a process of expansion into other areas
of the country was commenced. Nowadays, with five
generations of growth and 1.46 million ha of estate, is
the most extensively planted conifer in the country.
Studies of the ecological factors that influence the pro-
ductivity of radiata pine have been carried out (Gerding
and Schlatter, 1995; Huber and Trecaman, 2002). In
each of these studies, climatic and soil characteristics
were considered to be the most important factors deter-
mining the productivity of the species. It is largely
known that drought constraints on forest yields will
increase in importance as climate change leads to in-
creasingly hotter and drier summers, which in turn will
affect survival and productivity of forest trees. In Chile,
despite an increase in drought is expected in the future
(a decline of up to 30% in the productivity of P. radiata
plantations is expected CONAMA 2009; Bahamdndez
et al., 2010), genetic improvement for P radiata has
been directed towards characters such as volume, form
and wood density. There is a lack of intensive studies
on plastic responses for early growth traits to drought,
as a tool to explore the potential of early testing in the
Chilean radiata pine breeding programme. An incom-
plete understanding of the mechanisms that make
certain genotypes grow faster even when faced with
drought conditions has prevented defining selection
criteria for tree improvement. Therefore, investigations
into early plastic responses and their interaction with
water availability are required.

Plasticity has been observed for different native and
introduced forest species subjected to different abiotic
stresses (Kaufman and Smouse, 2001; Atzmon et al.,
2004; Chambel et al., 2007; Merchant et al., 2007,

Aranda et al., 2010). In Australia, for radiata pine seed-
lings and adult trees, different responses to biotic stresses
have been observed (Dean and Sands, 1983; Rowell et
al., 2009), while for native populations of the species,
variation in resistance to pathogens, pests, animals and
cold were also observed (Hood and Libby, 1980;
Simpson and Ades, 1990).

Given the history of its rapid expansion in Chile
following its introduction, new radiata pine plantations
have certainly experienced different selection pressures,
resulting in adaptation to new conditions. The species
were initially established in coastal sites, with site con-
ditions similar to those found in its native range, and
after a couple of generations, new plantations were es-
tablished in sandy soils sites, with water holding capa-
city as the most important factor limiting growth (Albert,
1900; Lewis and Ferguson, 1993; Huber and Trecaman,
2002; Camus, 2006). The goal of this paper is to test
whether populations of radiata pine from coastal sites
show different responses to drought than populations
from sandy soil sites. According to the optimum alloca-
tion hypothesis, these different responses would result
in (1) differential growth in terms of biomass accumu-
lation and (2) higher investment in below-ground
biomass. It is expected that families from sandy soils
allocate more biomass to roots at the expense of shoots.
To address these questions, phenotypic, growth, and
biomass partitioning changes, in response to two wa-
tering regimes, were analyzed in young seedlings from
56 families belonging to five growth sites of radiata
pine covering most of the geographic distribution of
the species in Chile. The specific objectives were: (1)
to assess the variability in morphology between well-
watered and water stress P. radiata seedlings, (2)
to determine the pattern of biomass allocation and (3)
to examine the degree of plastic response to water
regimes.

Methods
Material

We used a subset of the first generation open-polli-
nated families of the radiata pine breeding programme
in Chile. Seeds from these families were provided by
Forestal Celco S.A. and Forestal Mininco S.A., and
were randomly selected from seed orchards of these
companies. Seed originated from 25 year old plus trees
selected between 1976-1978 for traits such as superior
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Table 1. Origin of radiata pine investigated: soil and climatic features of their zones of origin

Location
Plus-trees Anual Sum1¥1er Su.mer Winter P ¢ Wat‘er Number
origin rainfaill rela.tn"e maximum - aip fall atre13 1 hOId".lg Latitude Longitude of
(site) (mm) humidity temperature (mm)? materia capacity s families
(%) O (mm) S W
Eight Region
Sandy Soils
1,100-1,208 63-65  26.1-28.6 553-619  Sandy 100 37°31°  72°04° 21
Seventh Region
Coastal 450-950  70-80  18.6-24.7 460-508  Granitic- 400 35°21° 72027 18
metamorphic
Eight Region
Coastal 1,300 77-80  19.4-23.9 588-713  Granitic- 400 38°14° 73°17° 27
metamorphic
Eight Region
Fothills of the Andes
1,600 60-65 19.6-259 900 Volcanic ash 400 36°39° 71°40° 5
Eight Region
Central Valley
1,000-1,300 60-65  26.0-27.2 433-500 Red clay 400 36° 56> 72°22° 9

! Summer relative humidity and maximum temperature include January and February. 2 Winter rainfall include June, July and August.

growth, stem form and volume, at five different sites
in Central Chile, ranging from Coastal Range, across
Central Valley to Fothills of the Andes in the Seventh
and Eight Regions (Table 1, Fig. 1).

Nursery experiment

Seeds from 80 open-pollinated families were sown
on 140 cm? containers filled with a mixture of compos-
ted bark of radiata pine and perlite (8:2 v), combined
with the slow-release fertilizer Basacote™ plus 6M.
Seeds were submerged in distilled water for 24 hour
before sowing. The experimental material was raised
in the Catholic University nursery at Talca city (35°
26’S,71°37°13” W, 131 m of elevation) for twenty weeks
under normal watering regimes (watering every day).
Average temperature and relative humidity fluctua-
ted between 14-20°C and 60-70% respectively. From
the 80 families sowed, and probably due to the age of
the seeds, only 69 families germinated enough seed-
lings to perform the experiment and run statistical ana-
lysis. Seven weeks after sowing, those 69 families were
placed following a split-plot design, with watering
regime as the whole plot and family nested within site
as the sub-plots. Five sites of origin, 69 families and

two watering treatments were used. The two watering
treatments, well watered (WW) and water stress (WS),
were applied to three replicates of 69 families, with 16

74° 73° 72° 71°
35° “ﬁi
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Figure 1. Location of the P radiata plus-tress collected bet-
ween 1976-1978 (* = Families from Sandy Soils Eight Region,
® =Families from Seventh Region Coastal Sites, A =Families
from Eight Region Coastal Sites, + = Families from Eight Re-
gion Fothills of the Andes Sites, # =Families from Eight Re-
gion Central Valley Sites).




6 S. E. Espinoza et al. / Forest Systems (2013) 22(1), 3-14

69 families within 5 plus-trees origins
e P EOELD B D
frefrs] ] nsfrisfr7]rs o] o]
1] 122] 23] f24] 25] f26 ] 27 ] 28 | 129 130]
131] 132] 133 34] 135] 136 137 | 138 ] f39 | f40]
1
1
1

| Water stress (Replicate 1)

42 143 144] 145] a6 147 |48 | a0 | 50
52 53] 54| 155 56 157 ] 58 [ 159 f60
o2 163 64| r65] o667 1168 [ 69

| Water stress (Replicate 3)

\
1y
\
v
\

| Water stress (Replicate 2) |

10 meters

| Well watered (Replicate 3) |

<
R
I

*

| 16 seedlings per family

| Well watered (Replicate 1)

| Well watered (Replicate 2) |

Figure 2. Experimental split-plot layout for 69 successfully ger-
minated families. Family plots were randomized within repli-
cations.

seedlings of each family included per sub plot (Fig. 2).
The watering treatments were not applied to individual
families; instead they were applied to trays containing
6 families each. The efficiency of an incomplete block
design, relative to design with full replicates was cal-
culated under the same conditions, but no additional
efficiency was achieved by blocking. Local micro-
environmental conditions were strictly controlled (i.e.
wind, position of the trays with respect to the solar
angle, and drift of water mist), in order to allow all
seedlings to receive the same growth conditions, except
for the watering regime.

Twenty weeks after sowing, seedlings from the 69
families were subjected to two watering regimes based
on predawn plant water potentials (‘*V,4): (1) well-wa-
tered treatment, in which seedlings were watered daily
to container capacity to maintain a ‘¥4 of —0.5+0.1
MPa, as measured with a pressure chamber. (2) cyclic
water stress treatment in which seedlings were subjected
to cyclic water deficits by watering to container capa-
city on three 12-days cycles when W4 reached —1.5+0.1
MPa on average. Water potential was measured in the
three 12-days cycles by using a subsample of three
seedlings per six families per watering regime, and was
only used to validate a reference value, obtained from
bibliography, to apply the withholding of water. Accor-
ding to Squire et al. (1987), with ten days of with-
holding of water, five-month old P radiata seedlings
reach a water potential of —1,9 MPa with seedlings been
wilted. Temperature and relative humidity averaged
22°C and 59% respectively. During this period, the

water supply was withdrawn until the water content of
each tray (with 88 containers and 6 families each)
reached 40% of field capacity (determined by weight).
Water availability was homogeneous among families,
and this watering level was maintained approximately
constant until the end of the stress period. After the
water restriction was applied, only 56 families with at
least 15 seedlings survived in the water stress treat-
ment. The material used to perform the analysis consis-
ted of 15 seedlings per family and watering regime.

Assessments

The seedlings were harvested eight weeks after water-
stress treatment started. Total height (H), root collar
diameter (D), shoot dry weight (stem + needles) (SDW)
and root dry weight (RDW) were measured (80°C,
24 h). The total dry weight (TDW =SDW + RDW), the
root/shoot ratio (RSR=RDW/SDW) and the height/
diameter ratio (HD = H/D) were also calculated. Fifteen
seedlings per water regime treatment and per family
were harvested. All weight and linear measurements
are in milligrams (mg) and millimeters (mm), respec-
tively.

Statistical analysis

Growth (H, D, HDR) and biomass (TDW, RDW,
SDW, RSR) traits were analyzed with the general linear
model approach (GLM) to analysis of variance, with
type I1I sum of squares, using SAS software (SAS Ins-
titute, 1999). Prior to the analysis, the data were exami-
ned and conformed to the normality and homogeneity
of variance assumptions required for the analysis of
variance. The model terms were fitted according to the
hierarchical design of the experiment, considering
families as nested within sites [1].

Yiu=p+W;+O;+F(O)+W;*F(O)+euu [1]

where Y is the observed phenotypic measurement
(growth and biomass traits), p is the overall mean, W;
is the fixed effect of i watering regime, O;is the fixed
effect of j" plus-tree origin, F(O),; is the random effect
of the k™ family nested within the j* plus-tree origin,
W;*F(O)y, is the interaction between i watering regime
and the k™ family nested within the j* plus-trees origin,
and ey is the experimental random error. A significant
effect of the water stress treatment in this analysis indi-
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cates the existence of phenotypic changes in response
to drought for the trait considered, and a significant
genotype X environment interaction [i.e. interaction
Wi*F(O)y; of the model], indicates the existence of
differences among families within sites for those chan-
ges. Whenever the treatment factor was significant,
the difference between mean phenotype of each family
within sites in the two watering regimes considered
was evaluated with a t-test.

For the plasticity analysis the position of each popu-
lation in the space defined by its mean phenotype under
the water stress treatment (on the x-axis) and under the
well-watered treatment (on the y-axis) was represented
graphically following Pigliucci and Schlichting (1996).
This way, each family is represented by a single point
and, if the two axes are in the same scale, the main dia-
gonal represents the line of null phenotypic change,
that corresponds to a flat reaction norm and the tangent
(slope) of the angle o, formed between the line connec-
ting each point to the origin and the x-axis can be in-
terpreted as an index quantifying phenotypic change.
The main advantage of this index, when compared to
the most common methods based on the difference
between mean phenotypic values in each environment
(e.g. Scheiner, 1993), represented in this biplot by the
orthogonal distance to the main diagonal, is that the
slope is reflecting the change in relative terms, more
significant from a biological point of view. Besides,
this index also reflects the direction of the response
(slope higher or lower than one), which has obvious
biological relevance (Via, 1993). We will further refer
to this index as angular phenotypic change index (APCI).

For the biomass allocation analysis, we performed
an allometric analysis through the regression of the
natural logarithms of each biomass component (RDW
and SDW) (Poorter and Nagel, 2000). The classical
allometric equation was used:

Y = aX? [2]
where [ is the allometric exponent and o is the allome-

tric coefficient. The allometric equation was log-trans-
formed to yield a simple linear relationship:
Y=0XP<slog (Y)=log () +Blog (X) [3]
where the allometric exponent becomes the slope and
the log of the allometric coefficient is the intercept.
Changes in allocational patterns were assessed by com-
parison of the slopes and intercepts corresponding to
different watering levels (Schlichting and Pigliucci,
1998). When, for a given family within site, a strong
linear relation between biomass compartments existed

and the two lines of regression corresponding to the
two water treatments overlapped, the slope of those
lines will differ only if the water stress treatment caused
significant changes in the relative growth rates of shoots
and roots. Following Samson and Werk (1986) and
Klinkhamer et al. (1990), F-tests were used to investi-
gate proportionality of allocation and the influence of
water on these relationships. This was done using RDW
as the dependent variable (Y) and SDW as the covariate
(X) in the GLM.

Results
Growth and biomass response to water stress

Despite germination was variable in all 80 families
initially sowed, no statistical differences were detected
(»<0.01) for germination. Only two families, from Se-
venth and Eight Region Coastal Sites, germinated less
than 15 seedlings form 96 seedlings sowed (i.e. less
than 20% germination). However 11 families were dis-
carded due to low number of seedlings to perform sta-
tistical analysis, giving a total of 69 families to perform
the watering regime treatments. This could be possibly
due to different storage conditions of this families (i.e.
differences in moisture content), which could have
affected respiration and assimilation, and consequently
loss of vigor. Seeds have been in storage since 1978,
and unfortunately there is no information about storage
conditions (i.e. moisture content and temperature). On
the other hand, initial plant size did not influence any
of the plant growth or biomass traits. Before starting
the water stress treatment root collar diameter and height
were homogeneous for all families under study (p <0.01).
At 20 weeks of growth an average of 10.4£0.12 cm in
height and 1.85+0.02 mm in diameter was observed.
This indicates that the observed response in all families
after water stress is more attributable to the effect of
the withholding of water than the ontogenetic state of
the seedlings.

The level of water supplied to the plants affected the
growth of the families of radiata pine in all variables.
The low water potential at dawn (average —1.5+0.1
MPa) in the water stress treatment was sufficient to
generate a negative growth response in plants under
study, exhibiting a strong growth reduction (Table 2).
All traits were significantly reduced during the drought
period in the stressed plants of all 56 surviving families
(»<0.01).



Table 2. Different morphological traits among 56 half-sibs
families of radiata pine growing in different watering regi-
mes (mean = S.E. of the mean; n=1,680)

Watering regime

Trait
Well-watered Water stress
H (mm) 137.26+0.09? 119.28 +£0.09
D (mm) 2.58+0.01° 1.98+0.01°
HDR 5.37+0.032 6.11+0.04°
RSR 1.14+0.00? 1.11+0.00°
SDW (mg) 2,060.11+£0.01° 1,768.41 +£0.00°
RDW (mg) 1,805.11+£0.01° 1,600.43 £0.00°
TDW (mg) 3,865.12+0.02¢  3,368.81+0.01°

H: total height. D: root collar diameter. HDR: height/diameter
ratio. RSR; root/shoot ratio. SDW: shoot dry weight. RDW: ro-
ots dry weight. TDW; total dry weight. Different letters indica-
te statistical differences for watering regime at p <0.01.

Differences due to site of origin of the families or
the family nested within the site of origin for most va-
riables were not observed when analyzed independently.
For the two watering regimes, differences for all varia-
bles were also observed. When families within sites
interacting with watering regime were analyzed i.e.
interaction W*F(O) in equation [1]), significant
differences for all traits were observed (Table 3). Fa-
milies from some sites (e.g. Eight Region Sandy Soils
and Eight Region Fothills of the Andes sites) developed
more diameter and height in the water-stress treatment.
The same situation was observed in the case of RDW,
SDW and TDW. In the well-watered treatment, families
belonging to Seventh and Eight Region Coastal sites
had a better performance in growth traits (Table 4).
Watering regime accounted for the highest proportion
of the variability encountered in the analysis of most
traits, as expected, reaching up to 23% for D (Table 3).
Nevertheless, despite watering by family within site
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interaction explained only a minor percentage of the
variance (i.e. up to 9.7% for RSR), its effect was highly
significant for all the variables analyzed. Family nested
within site was not significant either for D and or dry
masses, but it was significant for H (» <0.01) and the
height-related trait HDR (Table 3). These three factors
account for up to 36% of the variability.

Inter-site plasticity variation

After ANOVA was performed, APCI values analysis
reflected differences in plasticity for almost traits
analyzed. For growth traits (D, H), families belonging
to coastal sites showed the highest values for APCI,
ranging from 0.97 for D and 0.86 for H. By contrast,
families from interior sites (i.e. Eight Region Fothills
of the Andes and Eight Region Sandy Soils sites) were
relatively stable, since its angular plasticity index is
lower and a little closer to the zero plasticity line. In
the case of H, families from the Eight Region Fothills
of the Andes sites exhibited the lowest plasticity values
(Fig. 3, Table 5). Differences in plasticity were also
observed within sites (i.e. between families), being
families from the interior sites the less plastic, and
families from coastal sites the more one.

For some of biomass traits (SDW, RSR), families
belonging to coastal sites also showed the highest va-
lues for APCI, ranging from 0.81 for RSR, to 0.91 for
SDW. On the other hand, families of Eight Region Sandy
Soils and Eight Region Fothills of the Andes sites were
relatively stable, since its plasticity index is lower and
a little closer to the zero plasticity line. For all traits diffe-
rences between sites were observed, in the case of SDW,
families from the Fothills of the Andes Eight Region
sites exhibited the lowest plasticity values (Fig. 4, Table5).

Table 3. Percentage of the variance due to watering regime (W), site of origin (O), family nested within site [F(O)], wate-
ring by site interaction (W*0O) and watering by family nested within site interaction (W*F(O)), for growth and biomass traits

Source D H HDR SDw RDW TDW RSR
of df?
variation’ PV? Sig* PV  Sig. PV Sig. PV Sig. PV Sig. PV Sig. PV Sig.
W 1 231 #x% 553 xxx 6.33  xxx 1233 sxx 0.63  xxx  12.86 x*xx  0.51 wxx
(0) 4 0.10 ns 0.10 n.s 0.28 n.s 0.03 ns 1.46 * 0.44 s 2.13 ns
F(O) 51 738 ns  10.78 %+ 11.37 =*%x 7.74 ns 836 ns 730 ns 11.69 ns
W*0O 4 1.22 * 0.42 ns 0.74 * 0.09 ns 0.18 ns 0.04 ns 0.69 n.s
W*F(O) 51 572 x%x 5.04 wxx 385 xkx 562 #xxx 561  xxx 498 xxx 9T1  swx

H: total height. D: root collar diameter. HDR: height/diameter ratio. RSR: root/shoot ratio. SDW: shoot dry weight. RDW: roots
dry weight. TDW: total dry weight. ' According to equation [1]. * Degrees of freedom. * Percentage of the variance (%). * Ssig-
nificance levels (n.s: non significant; * p < 0.05; ** p<0.01; *** p<0.001).
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Table 4. Growth and biomass partitioning of P radiata according to the plus-trees origin. Means =+ standard errors (different
letters indicate statistical differences for watering regime at p <0.01)

Site Wateiring D H HDR RDW SDW TDW RSR

regime (mm) (mm) (mg) (mg) (mg)

Eight region sandy soils Well-watered ~ 2.51+0.02*  134.8+1.81*  5.40+0.06* 1,842.7£20.6* 2,050.8£23.1* 3,893.6+39.8*  *1.12+0.00*
Water-stress ~~ 2.0240.02°  119.2+1.67  597+0.07° 1,633.8£16.7° 1,777.9£17.3* 3411.0£31.9°  *1.09+0.00°

Seventh region coastal Well-watered ~ 2.58+0.03*  138.4+£2.050  537+£0.05 1,748.7£19.6* 2,055.2427.5* 3,804.1+44.3*  *1.17+0.01°
Water-stress 1.99£0.020  117.7£201°  6.00£0.09° 1,546.9£13.8" 1,714.6£18.6° 3308.4+£28.8°  *1.14£0.01°

Eight region coastal Well-watered ~ 2.65+£0.02*  1388+1.54*  529+0.05 1,795.1+17.2* 2,068.1420.1* 3,863.2+342*  1.16+0.00°
Water-stress 1.92£0.02°  1192+£1.55°  6.29+0.08 1,614.1+£152> 1,758.1+13.7° 3372.3£26.0°  1.09+0.00°

Eight region fothills of the Andes ~ Well-watered ~ 2.42+0.08*  130.9+4.74  545£0.15* 1,887.0£55.5* 2,039.6£63.4* 3,926.7+113.1°  1.08+0.01°
Water-stress 1.99£0.06°  1284+546°  6.41+0.14> 1,635.04£38.7° 1,817.3£48.1° 3452.3+79.1°  1.11+0.02*

Eight region central valley Well-watered ~ 2.554+0.04*  138.5£3.06*  5.52+0.13* 1,830.2+31.9* 2,076.7£36.3* 3907.0+64.4*  1.14£0.01*
Water-stress ~~ 2.01£0.04°  119.8£2.62°  6.05£0.14° 1574.1£19.1° 1,774.0£21.1° 3348.1£37.2°  1.13£0.01°

H: total height. D: root collar diameter. HDR: height/diameter ratio. RSR: root/shoot ratio. SDW: shoot dry weight. RDW: roots

dry weight. TDW: total dry weight. * p <0.05.

Patterns of biomass allocation

In general, the fraction of biomass in aboveground
organs (stems + needles) generally decreased, and frac-
tion in roots increased with lower water availability.
On the log-log-scale, significantly (» <0.01) different
slopes and intercepts in allometric regression lines for
well-watered vs. water-stress treatments were found in
three out of five sites for biomass allometry, these were
Seventh and Eight Region Coastal and Eight Region
Sandy Soils sites (Fig. 5). Besides, the interaction bet-
ween the watering regime with family and with log of
SDW as a covariate were significantly for the same three
sites, which indicates that trajectories of biomass allo-
cation were altered by watering regime and the cova-
riate, i.e. RDW was not only affected by watering regime
but also by SDW. In families from Seventh Region

Coastal sites, more biomass was allocated to shoots in
water-stress treatment, while in families from Eight
Region Sandy Soils and Eight Region Coastal sites,
more biomass was allocated to roots (Fig. 5).

Discussion

The present paper is focused on the morphological
response of families from Chilean landrace of radiata
pine to two contrasting watering regimes. Until pre-
sent, little information was available on the morpholo-
gical changes induced by water stress during the initial
developmental stages of this species. It is largely
known that in the case of low nutrient or water avai-
lability, there will be a decreased water uptake per unit
root mass which is expected to increase the allocation
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Figure 3. Angular Phenotypic Change Index for growth traits root collar diameter (D), height (H) and height/diameter ratio (HDR).
(O=Eight Region Sandy Soils Sites, (1= Seventh Region Coastal Sites, & =Eight Region Coastal Sites, A =Eight Region Fothills

of the Andes Sites, * =Eight Region Central Valley Sites).
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Table 5. Angular Phenotypic Change Index of P radiata families, according to the plus-trees origin (site). Means = standard
errors (different letters indicate statistical differences for site at p <0.01)

Site D H HDR RDW SDW TDW RSR
Eight region sandy soils 0.891+0.013* 0.815£0.013* 0.736+0.011* 0.846+0.011* 0.855+0.012* 0.925+0.009* 0.736+0.012°
Seventh region coastal 0.923+0,015* 0.876+0,015* 0.739+0.010* 0.843+0.010* 0.890+0,010*  0.936+0.007* 0.799+0.009*
Eight region coastal 0.973£0.010° 0.86440.009* 0.800+0.009° 0.838+0.006* 0.916+0.007* 0.935+0.008* 0.812+0.006°
Eight region fothills of the Andes 0.869+0.034* 0.703+0.034°> 0.804+0.002° 0.961+0.005> 0.772+0.034°* 0.921+0.020* 0.791+0.030°
Eight region central valley 0.904+0.021*  0.862+0.025* 0.737+0.009* 0.965+0.015° 0.903+0.020° 0.991+0.017° 0.729+0.009°

H: total height. D: root collar diameter. HDR: height/diameter ratio. RSR: root/shoot ratio. SDW: shoot dry weight. RDW: roots

dry weight. TDW: total dry weight.

to roots. However, in the case of limited water supply,
the changes are only modest (Poorter and Nagel, 2000).
Results of this study are in agreement with this state-
ment. Among the five sites of growth of radiata pine
in Chile, the allometric trajectories for shoots and roots
exhibited significant differences between water regi-
mes, observing that only families from Eighth Region
Sandy Soils and Eighth Region Coastal sites shifted
allocation to roots when exposed to water tress.

In the analysis of variance, as expected, watering
accounted for the highest proportion of the variability
encountered in the analysis of most traits, which con-
firms the severity of the applied stress. Although fami-
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lies within sites explained only a minor percentage of
the variance (from 7% to 11%), which still suggests a
high family variability. At the same time, the inter-
action W*F(O) explained up to 9% of the variation,
which indicates the existence of differences among fa-
milies within sites (Table 3). These analyses confirmed
differences in plasticity for all traits analyzed. For
example, families belonging to the Sandy Soils of the
Eighth Region (see Table 1), in which soils have a low
water holding capacity and high vapor pressure deficit
(Gerding and Schlatter, 1995; Huber and Trecaman,
2002), exhibited superior growth to the families from
coastal areas when they were growing under water-
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Figure 4. Angular Phenotypic Change Index for biomass partitioning traits shoot dry weight (SDW), root dry weight (RDW), to-
tal dry weight (TDW) and shoot/root ratio (RSR). (O =Eight Region Sandy Soils Sites, [0 = Seventh Region Coastal Sites, & =Eight
Region Coastal Sites, /A =Eight Region Fothills of the Andes Sites, * =Eight Region Central Valley Sites).
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Figure 5. Effects of water treatment on the allometric relationship between root and shoot biomass of the five sites of origin of
P radiata studied. Black circles and continuous lines represent stressed plants, black crosses and dotted lines represent non-stres-
sed plants. a,b,c) Significant differences (p <0.01) in slopes/intercepts between watering regimes. d,e) No significant differences
in slopes between treatments (Allometric regression lines in bold represents well-watered treatment, while in italics represents wa-

ter-stress treatment).

stress and also allocated more biomass to roots in com-
parison to the other four sites (Table 4). Although they
have a slightly less plasticity for shoot biomass (SDW),
this situation is reversed slightly in the case of root
biomass (RDW). Some organisms, particularly in the
early stages of development, have the ability to alter their
patterns of carbon allocation in response to certain en-
vironmental stimuli (Bloom ef al., 1985). According
to the theory of specialization (Lortie and Aarssen,
1996), compared with genotypes adapted to drought
conditions, genotypes adapted to favorable environ-
ments present a superior performance in these environ-
ments, but this is reduced when conditions are limiting,
which results in a high phenotypic plasticity. By con-
trast, genotypes adapted to unfavorable conditions, may
have superior performance in restrictive environments
but are unable to take advantage of favorable condi-
tions, leading to a low plasticity. In this study, the fami-
lies developed in the Eight Region Sandy Soils sites
exhibited behavior consistent with this theory, i.e. have
a higher growth in water restriction, but less growth in
favorable conditions. These families, which grew

always under restricted climate environments (i.e. low
water holding capacity and high vapor pressure deficit)
(Table 1), are not able to take advantage of favorable
environmental conditions represented by the well-wa-
tered treatment. This could indicate a more conserva-
tive strategy of water use in these families when faced
drought, allocating more roots at the expense of shoots,
strategy that could have been influenced by environ-
mental pressures in which these families developed.
On the other hand, families of the coastal sites (e.g.
Eight Region Coastal sites) have the highest values of
plasticity and biomass allocated to shoots.

In general, the results obtained in this study agree
with those from other species (e.g. Chambel et al.,
2007), which confirms the reliability of the results
obtained in short-term tests with artificially imposed
stresses. However, in the case of families belonging to
Eight Region Fothills of the Andes sites, results must
be interpreted with caution because only two of the
five families initially sowed (Table 1) survived with more
than 15 seedlings each in water stress treatment, and
high standard deviation (Table 4) could have biased re-
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sults. Only 60 seedlings were analyzed in these fami-
lies, while in the case of families from Eight Region
Coastal sites, 570 seedlings were analyzed. Although
the water stress treatment applied maybe too short to
obtain informative data on drought regulation mecha-
nisms at organ and whole plant level, the drought period
was long enough to affect morphological mechanisms
regulating drought responses. For example, survival
was negatively affected, reaching only 44% in the
waters-stress treatment (p <0.01), with families from
Seventh Region Coastal and Eight Region Sandy Soils
sites reaching the highest percentages, which is coin-
cident with the separation of families in different groups,
those belonging to coastal sites and those belonging
to interior sites (specifically Sandy Soil sites), deno-
ting a significant pattern of genetic variation that can
also be considered as plasticity for survival.

Resource allocation patterns may change with plant
size, i.e. they may be “allometric” in the broad sense,
and it has been argued that some observed changes in
allocation are primarily due to size (Coleman et al.,
1994). Part of the ontogenetic drift is related to the size
of the plant, as larger plants will have to invest a larger
fraction of their biomass in support structure, and have
a larger leaf area so that self-shading increases. In this
study seedlings from all families were in the same stage
of development, i.e. before the formation of dwarf
shoots, which support the fact that differences between
families were attributable to phenotypic plasticity
(Poorter and Nagel, 2000) rather than ontogenetic
plasticity (Wright and McConnaughay, 2002). Methods
used in this study to analyze plant biomass allocation
assume that the outcome of interactions is size inde-
pendent. The technique of the allometric analysis allowed
us to correct allocation patterns for possible size diffe-
rences between plants of different treatments. When
height of plants was analyzed as a covariate, results
support this, i.e. plants size did not influenced neither
growth nor biomass allocation.

Although it is debatable whether the emphasis in
tree breeding should be on producing genotypes suitable
for specific environments, or genotypes suited to a wide
range of environments, family X watering interaction
found in this study could help to select families accor-
ding to their drought tolerance. Since drought events
are predicted to increase in the long term for Central
Chile (CONAMA, 2009), negatively affecting esta-
blishment and productivity of radiata pine, families
from Sandy Soils Eight Region could be established
in more drought prone areas, because as was seen, they

had high investment to roots and low investment to
needles (transpiring organs) which conforms to a drought
tolerant phenotype as it would allow both maximum
water capture and minimum water losses. Also, and as
was reported by Espinoza, (2012) for the same families
unpublished data, family X watering interaction was
not too strong to reduce heritability and thus, effecti-
veness of selection. Survival and probably productivity
of radiata pine in drought prone sites could thus be
increased by breeding for high root biomass and low
shoot biomass.

Finally, the results of this study allows us to specu-
late that the novel environmental conditions that were
experienced by radiata pine upon its introduction to a
new habitat in Chile, might have favored more pheno-
typically plastic responses and result in an increased
ability to success in new environment. It is likely that
the intensity of natural selection experienced in the
first generations after planting in 1891, has been low,
since it was introduced in a coastal area with soil and
climatic characteristics similar to the natural range of
the species (i.e. Eighth Region Coastal sites). Coloni-
zers are frequently thought to have high phenotypic
plasticity, permitting phenotypic variation of a parti-
cular genotype under different environmental challen-
ges, and providing tolerance over a range of environ-
mental conditions (Bradshaw, 1965; Thompson, 1991).
Once the species was established in new environments
(i.e. Eighth Region Sandy Soils sites), new plantations
have experienced different selection pressures, resul-
ting in adaptation to new conditions. It has been hypo-
thesized that differing selection pressure on novel phe-
notypes could lead to local adaptation (Pigliucci et al.,
2006) and fast formation of local land races. Seedlings
from seeds harvested in planted stands with transferred
provenances perform differently from seedlings of their
original provenance. In Denmark, seedlings from seeds
harvested in first generation stands of Picea sitchensis
have better survival and are less injured by climate than
seedlings of the same provenances from direct import
from North America (Nielsen, 1994). Similar expe-
riences are found with Abies normaniana in Denmark
(Nielsen, 1999). In Scotland, seedlings from first ge-
neration Abies grandis stands perform far better than
direct import of the same provenance (Ennos et al.,
1998). In Germany, Douglas fir seedlings from German
stands perform better than foreign provenances
(Kleinschmit ef al., 1974). Thus, a fast formation of
“land races” (from one generation to the next) seems
to occur in several conifer species.
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