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Abstract
Aim of the study: Cluster plot designs are widely used in national forest inventory systems to assess current forest resources. By 

spreading subplots apart, a cluster plot could potentially capture a large variety of local plant species. This aspect has rarely been 
examined in the past. This study is conducted to understand how design factors of a cluster plot affect estimates of local plant spe-
cies composition.

Area of study: Two large census forest plots in Taiwan and Peninsular Malaysia over 25 ha with different species richness were used.
Materials and methods: Design factors of a cluster plot were plot configuration (PCONFIG), plot area (PAREA), cluster layout 

(CLAYOUT), and extent of ground area covered by a cluster (CEXTENT). Jaccard and Sørensen similarity indices were used to 
compare species compositional similarity between two cluster plot designs. A simulation study was carried out.

Main results: Results were consistent among the study sites and similarity indices. PAREA, CLAYOUT, and CEXTENT notably 
influenced how species composition was sampled. Larger PAREA increased similarity in species composition between two cluster 
plot designs. Square and rectangle CLAYOUT had the most dissimilar species composition between them. Larger CEXTENT de-
creased similarity in species composition. 

Research highlights: We recommend that for CEXTENT ≤ 1000 m2 and PAREA ≤ 500 m2, a cluster plot of rectangle CLAYOUT is 
preferred for information gain. The study could potentially benefit forest managers designing cluster plots for plant diversity assessment.
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sampling efficiency.
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Introduction

Plant diversity provides multifaceted benefits to 
human society. The loss of it will have important 
consequences on our economies, food security, and 
livelihoods (FAO & PAR, 2011; IPBES, 2018). To 
address this, national and/or regional policies require 
robust data to report on biodiversity trends (Geijzen-
dorffer et al., 2016). In many countries, National 

Forest Inventories (NFIs) provide such data, which is 
useful for decision-makers to shape policy instruments 
to halt the loss of plant diversity (Winter et al., 2008; 
Geijzendorffer et al., 2016). However, NFIs provide 
only sample-based estimates of plant diversity because 
it is difficult to fully enumerate all plant individuals 
(Lam & Kleinn, 2008). Uncertainty in these estimates 
could hamper understanding and conservation of 
valuable natural resources (Costello et al., 2013). 

https://doi.org/10.5424/fs/2020291-15894
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Thus, there is a need to develop an efficient forest 
inventory design to accurately gather information on 
plant diversity (Burley & Gauld, 1995). 

Ground plots are the primary source of information 
on plant diversity. Understanding the effects of a plot 
design on sampling plant diversity is necessary (Yang 
et al., 2019b). A review of the common plot designs used 
in NFIs could provide insights into how biodiversity 
information is gathered on the national level. In 36 coun-
tries with a NFI system, Tomppo et al. (2010) found that 
half of the countries applied systematic sampling with 
cluster plots. A cluster plot is a group of subplots organ-
ized at a specific distance and a configuration at a sam-
ple location (Kershaw et al., 2016). Thompson (2012) 
suggested that a cluster plot ideally represents the full 
diversity of a plant population at a local scale. By 
spreading subplots far apart within practical constraints, 
subplots should capture largely different plant species 
between them. A high similarity in species composition 
between subplots suggests an ineffective cluster plot 
design. However, plant species tend to aggregate at the 
local scale as a result of ecological processes such as 
limited dispersal (Seidler & Plotkin, 2006) and interspe-
cific competition (Fowler, 1986). If this spatial autocor-
relation is known, an optimal cluster plot design could 
be constructed for sampling plant species composition 
(Korhonen & Maltamo, 1991). But, spatial autocorrela-
tion is generally unknown a priori for a forest, as it is 
site specific due to its underlying ecological processes, 
and is scale-dependent (Malanson, 1985; Schetter et al., 
2013). Perhaps, certain configurations of cluster plot 
could intrinsically take the spatial autocorrelation into 
account without the need to specifically quantify it, e.g. 
some particular distance between subplots or geometri-
cal arrangement of subplots. If so, they could be appli-
cable across forest types and would appeal to practices 
that assess plant species composition with only presence/
absence data. This aspect of cluster plot has not been 
explicitly examined in the past.

Past studies on optimum cluster plot design focus on 
stem volume (Tokola & Shrestha, 1999), woody debris 
(Scheuber & Köhl, 2003), and stand density and basal 
area (Yim et al., 2015). To our knowledge, none has 
examined cluster plot designs on sampling species com-
position. There are, however, studies of other plot designs 
on sampling plant species richness (number of species) 
and biodiversity indices. For example, Potts et al. (2001) 
compared single plots of various plot sizes (0.01 to 1.0 
ha), plot shapes (L- and rectangular shape), and plot 
width-to-length ratio (1:1 to 1:32) in sampling species 
richness in two Malaysian tropical forests. Motz et al. 
(2010) compared angle count sampling to fixed area plots 
in estimating biodiversity indices. Many other studies 
also used species richness as a measure for evaluation of 

optimum plot designs (e.g. Phillips et al., 2003; Grussu 
et al., 2016) because it is a metric widely used to detect 
biodiversity trends (Hillebrand et al., 2018). However, 
Feeley et al. (2011) argued that attention should also be 
paid to species composition because a composition 
change could signal ecosystem responses to global cli-
mate change. For instance, compositional changes in 
keystone plants could affect the production of season-
ally critical tropics (Peres, 2000). Yang et al. (2019b) is 
the only study to our knowledge that compares various 
single plot designs on sampling species composition. As 
many NFIs are designed around cluster plots (Tomppo 
et al., 2010), there is a need to study performances of 
cluster plots in assessing plant species composition. 

The overall goal of this study was to evaluate clus-
ter plot designs in capturing local plant species com-
position. Three specific objectives were established to 
compare similarity in species composition: (1) between 
a single plot and a cluster plot, (2) between two cluster 
plots with different spatial arrangement of subplots, 
and (3) between two cluster plots of different ground 
coverage. Species composition similarity is expressed 
as the Jaccard and Sørensen similarity indices, which 
account for number of shared species between two plot 
designs (Chao et al., 2005). The first objective exam-
ines whether a single large plot would perform better 
than a group of smaller sized subplots in capturing local 
plant species composition. Green & Young (1993) ar-
gued that many small plots would be better than a few 
large ones in sampling plant species that showed spatial 
aggregation. A geometrical arrangement of subplot 
would characterize the compactness of a cluster. Thus, 
the second objective examines how cluster compactness 
affects sampling of local plant composition. Ground 
enclosed by a cluster (ground coverage) determines 
distance between subplots. Larger ground coverage 
should theoretically lower similarity in species com-
position between subplots. Hence, the third objective 
examines this proposition. Lastly, this study does not 
intend to find an optimum sample size for sampling 
species composition similarity with cluster plot designs. 
Instead, its motivation is to assist decision makers in 
choosing a cluster plot design, which is a key factor in 
a forest inventory program, that adequately samples 
local species composition given available financial and 
capital resources at the selected sample locations. 

Materials and methods

Data

Two datasets that differed in forest ecosystems and 
plant diversity were used in this study. The first cen-
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sus dataset was the 50-ha Pasoh Forest Dynamics Plot 
(Pasoh), which measured 1000 × 500 m and was clas-
sified as tropical lowland mixed dipterocarp forests. 
Data from 1986-1989 were used in this study and 
consisted of 335,343 tree records and 820 species 
(Manokaran & LaFrankie, 1990). The second census 
dataset was the 25-ha Fushan Forest Dynamics Plot 
(Fushan), which measured 500 × 500 m and was clas-
sified as subtropical submontane evergreen broadleaf 
forests. Data from 2003-2004 were used in this study 
and consisted of 114,354 tree records and 110 species 
(Su et al., 2007). The census protocols were identical 
for both sites. All plants ≥ 1 cm in diameter at breast 
height (dbh) in the plot were mapped, measured, and 
identified to species level in scientific nomenclature.

Plot designs

Four plot design factors were considered in the 
study: (1) plot configurations (PCONFIG), (2) area of 
a plot or total area of subplots of a cluster (PAREA), 
(3) cluster layout as geometrical arrangement of sub-
plots in a cluster (CLAYOUT), and (4) extent of ground 
area enclosed by the boundaries of a cluster plot (CEX-
TENT). The combinations of design factors and their 
respective levels were depicted in Fig. S1 [suppl.]. 
Only circular plot and subplot were considered to fa-
cilitate evaluation of the three study objectives. Güler 
et al. (2016) recommended more compact plot shape 
such as circular plot when sampling species composi-
tion and diversity. The number of subplots of a cluster 
plot was fixed to four, which was the average among 
the 18 countries’ NFIs (Tomppo et al., 2010).

Two PCONFIG levels were considered: (1) single, 
and (2) cluster. For PCONFIG = single, a single circu-
lar plot was established with the plot center at a sample 
location, whereas for PCONFIG = cluster, a cluster of 
four circular subplots was established with the cluster 
center at a sample location. Three PAREA levels were 
considered: (1) 250, (2) 500, and (3) 1000 m2. For 
PCONFIG = single, PAREA denoted the whole area of 
a single plot. For PCONFIG = cluster, PAREA denoted 
the total area of the four subplots, or equivalently the 
area of a subplot was PAREA/4. As a result, the area 
sampled by a plot is identical to that by a cluster for a 
given PAREA. 

The design factors CLAYOUT and CEXTENT were 
only applied to cluster plot. Three CLAYOUT levels 
were considered: (1) square, (2) rectangle with width-
to-length ratio of 1:3, and (3) equilateral triangle. For 
CLAYOUT = square and rectangle, four subplots were 
placed at the vertices. For CLAYOUT = triangle, the 
geometrical arrangement of subplots followed that of 

the USA FIA program (Bechtold & Patterson, 2005) 
with three subplots at the vertices and one at cluster 
center. Three CEXTENT levels were considered: (1) 
1000, (2) 2500, and (3) 10000 m2. Larger CEXTENT 
implied that subplots were placed further apart. As a 
result, there were 3 possible combinations of a single 
plot (3 PAREA) and 27 possible combinations of a 
cluster plot (3 PAREA × 3 CLAYOUT × 3 CEXTENT) 
with a total of 30 plot designs (Fig. S1 [suppl.]). 

Simulation methods

A simulation study was set up to evaluate the three 
study objectives, and the simulation was reiterated 100 
times. In an iteration, 500 sample locations were first 
randomly generated by random selection of x- and y-
coordinates. Then at a random sample location, all 30 
plot designs were laid out to observe presence/absence 
of a plant species for each plot design. This approach 
was to ensure that species composition between the 30 
plot designs could be compared at a single sample loca-
tion. When PCONFIG = cluster, the orientation of a 
cluster was randomized by selecting a random azimuth 
between 0 and 2π. As a result, all 30 plot designs were 
simulated at all 500 random sample locations.

When a sample location was near the boundaries of 
Fushan and Pasoh, correction for boundary slopover 
was applied. For PCONFIG = single, the walkthrough 
method by Ducey et al. (2004) was applied. For the 
walkthrough method, a sample location was reflected 
through a sample tree, and the sample tree would be 
double tallied if the reflected plot center laid outside 
the forest boundary (Ducey et al., 2004). For PCONFIG 
= cluster, the reflection method by Valentine et al. 
(2006) was used. For the reflection method, four direc-
tion vectors from a sample location to the centers of 
the four subplots were established. If a direction vector 
intersected the forest boundary, it was folded back over 
itself at the boundary with the subplot established at 
its terminus and sample trees corrected for boundary 
slopover by the walkthrough method if necessary (Val-
entine et al., 2006). Different boundary slopover cor-
rection methods were necessary to ensure that inclusion 
probabilities of trees near the boundaries were accurate 
for the specific PCONFIG (Kershaw et al., 2016). West 
(2013) found that use of different correction methods 
in an inventory did not introduce appreciable bias and 
did not reduce precision when estimating stand attrib-
utes, which could be extended to species composition 
similarity because the similarity indices applied in this 
study depended only on the presence/absence of a spe-
cies (Eqns. 1-2). However, this assumption should be 
examined in a future study. 
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Sampling intensity was determined by PAREA. It 
was the ratio of total ground area covered by 500 ran-
domly placed sample plots to the total area of a study 
site. For example, with PAREA = 250 m2, the total area 
covered by 500 random sample plots was 12.5 ha; thus, 
sampling intensity was 50% and 25% for Fushan and 
Pasoh, respectively. However, some sample plots would 
overlap with each other on the ground. As such, the 
actual total ground area covered by the 500 random 
sample plots and the sampling intensity should be less.

Analysis

Species composition between two plot designs was 
compared at the scale of sample location. At a sample 
location, two species composition similarity indices 
were calculated: Jaccard and Sørensen similarity indi-
ces as follows (Chao et al., 2005), 

Jaccard similarity index (JAC),
S

 JAC = 12 ×100%  (1)
S1 + S2 − S12

Sørensen similarity index (SOR),
2S

 SOR = 12 ×100%  (2)  
S1 + S2

where, S1 = number of observed species in a ground 
plot of plot design 1 at a sample location, S2 = number 
of observed species in a ground plot of plot design 2 at 
the same sample location, S12 = number of shared spe-
cies between the ground plot of plot design 1 and that 
of plot design 2 at the same sample location. Thus, 
similarity is expressed as the number of identical spe-
cies found in both ground plots of two different plot 
designs at the same sample location relative to the total 
number of distinct species in both ground plots. For 
PCONFIG = cluster, species data were pooled from all 
four subplots of a cluster plot before the calculation. 

When evaluating the three study objectives, species 
composition between two plot designs was compared 
on a common ground by identifying a design factor 
to be analyzed while controlling for other factors. For 
Objective 1, species composition of a single plot was 
compared to that of a cluster plot of a cluster layout 
at a sample location controlling for PAREA and CEX-
TENT. Under each combination of PAREA and CEX-
TENT, the comparisons were: (1) PCONFIG = single 
vs CLAYOUT = square, (2) PCONFIG = single vs 
CLAYOUT = rectangle, and (3) PCONFIG = single 
vs CLAYOUT = triangle. For Objective 2, species 
composition of two cluster plots of two different clus-
ter layouts were compared at a sample location con-
trolling for PAREA and CEXTENT. Under each 

combination of PAREA and CEXTENT, the com-
parisons were: (1) CLAYOUT = square vs CLAYOUT 
= rectangle, (2) CLAYOUT = square vs CLAYOUT = 
triangle, and (3) CLAYOUT = triangle vs CLAYOUT 
= rectangle. For Objective 3, species composition of 
two cluster plots of two different extent of ground 
area enclosed by a cluster were compared at a sample 
location controlling for PAREA and CLAYOUT. 
Under each combination of PAREA and CLAYOUT, 
the comparisons were: (1) CEXTENT = 1000 vs CEX-
TENT = 2500 m2, (2) CEXTENT = 1000 vs CEX-
TENT = 10000 m2, and (3) CEXTENT = 2500 vs 
CEXTENT = 10000 m2. For each objective, there were 
a total of 27 possible combinations of comparison, 
e.g. 3 comparisons × 3 PAREA × 3 CEXTENT for 
Objective 1 and so forth. Across all three objectives, 
we made a total of 81 comparisons. PAREA was the 
consistent controlling factor so that the set of com-
parisons that had identical PAREA were carried out 
on a similar sampling intensity. To reiterate, the two 
similarity indices were calculated at a sample location 
for each comparison (i.e., between two plot designs). 

For each of the 81 combinations, each simulated 
iteration produced 500 estimates of JAC and SOR from 
the 500 random sample locations. Let θij be an estimate 
of JAC or SOR for the j-th random location and the 
i-th iteration. Mean and standard deviation of θij were

calculated for the i-th iteration as 
500

θ i =∑ θ ij 500 and 
j=1

s
500

θi = ∑ (θ ij −θ i )2 499. The coefficient of varia-
j=1

tion in percent (CV) of θ for the i-th iteration was 
CVθi = sθi θ i ×100% . The 100 iterations produced 100 
means and CVs, which were then averaged as 

100 100
θ =∑ θ i 100  and CVθ =∑ CVθ i 100 . Further-

i=1 i=1

more, 2.5% and 97.5% quantiles of the 100 means and 
CVs were estimated. The interval between the two was 
designated as the empirical 95% confidence interval 
(E95CI). Lastly, θ , CVθ , and E95CI were reported in 
the study.

A hierarchical linear mixed effects (HLME) model 
(Pinheiro & Bates, 2000) was developed for each study 
objective to assess the significance of the comparisons. 
For Objective 1, the HLME model was, 

θ = (α0 + a0,PAREA + a0,CEXTENT (PAREA) ) +
+(α1 + a1,PAREA + a

(
1,CEXTENT (PAREA) )(single v square) + (3)

+ α 2 + a2,PAREA + a2,CEXTENT (PAREA) )(single v triangle)
 

where, θ  was mean of 500 estimates of JAC or SOR, 
(single v square) was the comparison of a single plot 
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to a cluster plot of CLAYOUT = square, (single v tri-
angle) was the comparison of a single plot to a cluster 
plot of CLAYOUT = triangle, αk was the k-th fixed 
effect, ak,PAREA was the k-th PAREA random effect, and 
ak,CEXTENT(PAREA) was the k-th CEXTENT nested under 
PAREA random effect for k = 0,…,2. 

For Objective 2, the HLME model was,

θ = (β0 + b0,PAREA + b0,CEXTENT (PAREA) ) +
+(β1 + b1,PAREA + b1,CEXTENT (PAREA) )(square v triangle) + (4)

+(β2 + b2,PAREA + b2,CEXTENT (PAREA) )(triangle v rectangle)   

where, (square v triangle) was the comparison of clus-
ter plot with CLAYOUT = square to CLAYOUT = 
triangle, (triangle v rectangle) was the comparison of 
cluster plot with CLAYOUT = triangle to CLAYOUT 
= rectangle, βk was the k-th fixed effect, bk,PAREA was the 
k-th PAREA random effect, and bk,CEXTENT(PAREA) was the 
k-th CEXTENT nested under PAREA random effect 
for k = 0,…,2. 

For Objective 3, the HLME model was,

θ = (δ0 + d0,PAREA + d

(
0,CLAYOUT (PAREA) ) +

+ δ1 + d1,PAREA + d1,CLAYOUT (PAREA) )(1000 v 10000) +  (5)

+(δ 2 + d2,PAREA + d2,CLAYOUT (PAREA) )(2500 v 10000)
 

where, (1000 v 10000) was the comparison of cluster 
plot with CEXTENT = 1000 m2 to CEXTENT = 
10000 m2, (2500 v 10000) was the comparison of clus-
ter plot with CEXTENT = 2500 m2 to CEXTENT = 
10000 m2, δk was the k-th fixed effect, dk,PAREA was the 
k-th PAREA random effect, and dk,CLAYOUT(PAREA) was the 
k-th CLAYOUT nested under PAREA random effect 
for k = 0,…,2.

As shown in above three HLME models, both 
fixed and random effects for k = 0,…,2 were esti-
mated. Random effects were estimated using a hier-
archical error structure because the comparisons in 
Eqns. (3-5) were nested with their respective control-
ling factors. For Objectives 1 and 2, the comparisons 
were nested within PAREA and CEXTENT under 
PAREA (Eqns. 3-4). For Objective 3, the compari-
sons were nested within PAREA and CLAYOUT 
under PAREA (Eqn. 5). The estimated values of αk, 
βk, and δk and their p-values were reported. The 
HLME models were fitted with R nlme package 
(Pinheiro et al., 2019). Similar HLME models were 
also used in Yang et al. (2019a) to study sample 
designs for airborne light detection and ranging ap-
plication. 

Results

Single vs CLAYOUT

Similarity in species composition between a single 
plot (PCONFIG = single) and a cluster plot of a cluster 
layout (PCONFIG = cluster and CLAYOUT = rectan-
gle, square, or triangle) was estimated controlling for 
PAREA and CEXTENT. The estimated mean (θ ) and 
mean CV (CVθ ) were consistent between the two 
similarity indices and the two study sites (Figs. 1 and 
S2; Table S1 [suppl.]). Consistently across levels of 
PAREA and CEXTENT, similarity in species composi-
tion was the highest between a single plot and a cluster 
plot of triangle CLAYOUT (Figs. 1a and S2a [suppl.]), 
e.g. mean JAC was 53-72% for Fushan and was 35-
55% for Pasoh (Table S1 [suppl.]). In contrast, similar-
ity in species composition between a single plot and a 
cluster plot of rectangle CLAYOUT was the lowest 
(Figs. 1a and S2a [suppl.]), e.g. mean JAC was 45-67% 
for Fushan and was 24-47% for Pasoh (Table S1 
[suppl.]). Non-overlapping E95CI suggested that the 
two comparisons were significantly different, which 
was also supported by the HLME models (p < 0.0001 
for α2; Table 1). Mean JAC and SOR for the compari-
son between a single plot and a cluster plot of square 
CLAYOUT were consistently similar to those for the 
comparison between a single plot and a cluster plot of 
rectangle CLAYOUT (Figs. 1a and S2a [suppl.]), but 
the HLME models suggested significant differences 
between the two comparisons (p < 0.0161 for α1; 
Table 1). In general, increasing PAREA increased mean 
JAC and SOR of a particular comparison. On the other 
hand, increasing CEXTENT for a given PAREA had 
little effects on the similarity indices. 

The trends in CVθ were the opposite of θ  (Figs. 1b 
and S2b [suppl.]). Mean CV was the lowest for the 
comparison between a single plot and a cluster plot of 
triangle CLAYOUT (e.g. for JAC, 13-26% for Fushan 
and 8-15% for Pasoh), and it was the highest for the 
comparison between a single plot and a cluster plot 
rectangle CLAYOUT (e.g. for JAC, 14-29% for Fush-
an and 9-22% for Pasoh) (Table S1 [suppl.]). Increas-
ing PAREA decreased mean CV of a particular com-
parison. However, increasing CEXTENT for a given 
PAREA had little effects on mean CV. 

Geometrical arrangement of subplots 
(CLAYOUT)

Controlling for PAREA and CEXTENT, similarity 
in species composition between two cluster plots of 
two different cluster layouts or geometrical arrange-
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Figure 1. (a) Mean (θ ) and (b) mean CV (CV ) Jaccard similarity index for comparing species composition between a single θ
plot and a cluster plot of a cluster layout for Fushan (open symbols) and Pasoh (filled grey symbols). The three comparisons 
are: (1) single vs CLAYOUT = rectangle (□ and ■), (2) single vs CLAYOUT = square (○ and ●), (3) single vs CLAYOUT = 
triangle (△  and  ▲). The comparisons are controlled for PAREA and CEXTENT. PAREA are 250 (black symbols), 500 (blue 
symbols), and 1000 m2 (green symbols). CEXTENT are 1000, 2500, and 10000 m2. Red solid lines depict empirical 95% con-
fidence intervals. 

ments of subplots was compared. The estimated mean 
(θ ) was consistent between the two similarity indices 
and the study sites (Figs. 2a and S3a; Table S2 
[suppl.]). Increasing PAREA noticeably increased mean 
JAC and SOR of a particular comparison. For a spe-
cific PAREA, increasing CEXTENT led to comparable 
mean JAC and SOR between the three comparisons of 
two CLAYOUT. Similarity in species composition 
between CLAYOUT of square and rectangle was the 
lowest, e.g. mean JAC was 49-70% for Fushan and was 
27-52% for Pasoh (Table S2 [suppl.]). On the other 
hand, similarity in species composition between CLAY-
OUT of triangle and rectangle was generally the high-
est, e.g. mean JAC was 50-75% for Fushan and 27-57% 
for Pasoh (Table S2 [suppl.]), and it was significantly 
different from the comparison of square to rectangle 
CLAYOUT as suggested by E95CI and HLME models 
(p < 0.0003 for β2; Table 1).

The trends in mean CV (CVθ ) were similar between 
the two similarity indices but were somewhat different 
between the two study sites (Figs. 2b and S3b; Table 
S2 [suppl.]). In general, increasing PAREA consis-
tently reduced mean CV of a particular comparison 
across similarity indices and study sites. However, for 
a specific PAREA, increasing CEXTENT decreased 

mean CV of a particular comparison for Fushan but 
instead increased it for Pasoh (Figs. 2b and S3b 
[suppl.]). For example, the mean CV of the comparison 
between triangle and rectangle CLAYOUT was either 
comparable or the lowest for Fushan (e.g. 11-22% for 
JAC), but it was either comparable or the highest for 
Pasoh (7-17% for JAC) (Table S2 [suppl.]). Similarly, 
mean CV of the comparison between square and rect-
angle CLAYOUT were the opposite, i.e., either com-
parable or the highest for Fushan (e.g. 13-24% for JAC) 
but either comparable or the lowest for Pasoh (e.g. 
7-16% for JAC) (Table S2 [suppl.]).

Extent of ground cover (CEXTENT)

By controlling for PAREA and CLAYOUT, similar-
ity in species composition between two cluster plots of 
two different extent of ground area enclosed by the 
boundaries of a cluster plot was compared. The esti-
mated mean (θ ) and mean CV (CVθ ) were consistent 
between the two similarity indices and the study sites 
(Figs. 3 and S4; Table S3 [suppl.]). The comparison 
between the two CEXTENT 1000 and 2500 m2 had 
consistently the highest similarity in species composi-
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Table 1. Estimated regression coefficients of hierarchical linear mixed effects models for 
Fushan and Pasoh for: (1) comparison between a single plot and a cluster plot of a cluster 
layout (αk, Eqn. 3), (2) comparison between two cluster plots of two different cluster layouts 
(βk, Eqn. 4), and (3) comparison between two cluster plots of two different extent of ground 
area enclosed by a cluster (δk,; Eqn. 5). Their corresponding test statistics and p-values are 
in parentheses 

Comparison of single vs CLAYOUT

JAC SOR

Fushan
α0 (intercept) 56.4283

(t2689 = 11.11, p < 0.0001)
71.0356

(t2689 = 16.33, p < 0.0001)
α1 (single v square) 1.5381

(t2689 =4.08, p = 0.0010)
1.2499

(t2689 = 5.31, p < 0.0001)
α2 (single v triangle) 6.7178

(t2689 = 9.73, p < 0.0001)
5.4410

(t2689 = 6.32, p < 0.0001)
Pasoh

α0 (intercept) 35.5271
(t2689 = 6.26, p < 0.0001)

51.6754
(t2689 = 8.30, p < 0.0001)

α1 (single v square) 1.4690
(t2689 = 2.41, p = 0.0161)

1.4896
(t2689 = 2.93, p = 0.0035)

α2 (single v triangle) 9.7442
(t2689 = 12.23, p < 0.0001)

10.1687
(t2689 = 6.49, p < 0.0001)

Fushan

Comparison of two CLAYOUT

JAC SOR

β0 (intercept) 59.3476
(t2689 = 11.82, p < 0.0001)

73.6766
(t2689 = 17.90, p < 0.0001)

β1 (square v triangle) 1.5496
(t2689 = 6.01, p < 0.0001)

1.2239
(t2689 = 7.02, p < 0.0001)

β2 (triangle v rectangle) 2.3067
(t2689 = 4.29, p < 0.0001)

1.7881
(t2689 = 4.49, p < 0.0001)

Pasoh
β0 (intercept) 36.8889

(t2689 = 6.00, p < 0.0001)
53.1538

(t2689 = 8.09, p < 0.0001)
β1 (square v triangle) 1.7055

(t2689 = 3.66, p = 0.0003)
1.7039

(t2689 = 4.08, p < 0.0001)
β2 (triangle v rectangle) 3.3404

(t2689 = 3.60, p = 0.0003)
3.3137

(t2689 = 3.68, p = 0.0002)

 

Fushan

Comparison of two CEXTENT

JAC SOR

δ0 (intercept) 62.6810
(t2689 = 12.59, p < 0.0001)

76.2374
(t2689 = 19.33, p < 0.0001)

δ1 (1000 v 10000) -3.3435
(t2689 = 6.03, p < 0.0001)

-2.5959
(t2689 = 8.83, p < 0.0001)

δ2 (2500 v 10000) -2.2433
(t2689 = 4.48, p < 0.0001)

-1.6467
(t2689 = 5.37, p < 0.0001)

Pasoh
δ0 (intercept) 41.4878

(t2689 = 6.70, p < 0.0001)
57.8319

(t2689 = 9.36, p < 0.0001)
δ1 (1000 v 10000) -3.1077

(t2689 = 3.74, p = 0.0002)
3.1175

(t2689 = 6.50, p < 0.0001)
δ2 (2500 v 10000) -2.5519

(t2689 = 3.45, p = 0.0006)
2.5363

(t2689 = 5.57, p < 0.0001)
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Figure 2. (a) Mean (θ ) and (b) mean CV ( CV ) Jaccard similarity index for comparing species composition between two cluster θ
plots of two different cluster layouts for Fushan (open symbols) and Pasoh (filled grey symbols). The three comparisons are: (1) 
CLAYOUT = square vs CLAYOUT = rectangle (□ and ■), (2) CLAYOUT = square vs CLAYOUT = triangle (○ and ●), (3) CLAY-
OUT = triangle vs CLAYOUT = rectangle (△  and  ▲). The comparisons are controlled for PAREA and CEXTENT. PAREA are 
250 (black symbols), 500 (blue symbols), and 1000 m2 (green symbols). CEXTENT are 1000, 2500, and 10000 m2. Red solid lines 
depict empirical 95% confidence intervals.

tion, e.g. mean JAC was 51-73% for Fushan and 28-
56% for Pasoh (Table S3 [suppl.]). On the other hand, 
the comparison between the two CEXTENT 1000 and 
10000 m2 had consistently the lowest similarity in spe-
cies composition, e.g. mean JAC was 49-70% for 
Fushan and 25-53% for Pasoh (Table S3 [suppl.]). The 
HLME models suggested that the similarity in species 
composition of the two comparisons were signifi-
cantly different (p < 0.0002 for δ1; Table 1). As with 
the above analyses, increasing PAREA noticeably in-
creased mean JAC and SOR of a particular comparison. 
Under a specific PAREA, triangle CLAYOUT had 
consistently the highest mean JAC and SOR for a com-
parison of two CEXTENT (Figs. 3a and S4a [suppl.]). 

Mean CV between the three comparisons was ma-
jorly comparable. However, mean CV of the compari-
son between the two CEXTENT 2500 and 10000 m2 
in some cases was the lowest, e.g. for JAC, 12-22% for 
Fushan and 8-18% for Pasoh (Table S3 [suppl.]). More-
over, the comparison between the two CEXTENT 1000 
and 10000 m2 in some cases was the highest, e.g. for 
JAC, 13-24% for Fushan and 8-19% for Pasoh (Table 
S3 [suppl.]). Increasing PAREA consistently decreased 
mean CV of JAC and SOR of a particular comparison. 
In general, under a specific PAREA, triangle CLAY-

OUT had the lowest mean CV of JAC and SOR for a 
comparison of two CEXTENT (Figs. 3b and S4b 
[suppl.]). 

Discussion

With increasing emphasis on managing global forests 
under diverse objectives, forest biodiversity informa-
tion extracted from a robust forest inventory system 
has the potential to inform policies on regional and 
national levels (Winter et al., 2008). Cluster plots have 
been widely used at these spatial scales because trave-
ling between sample points is considerably costly due 
to long distances (Yim et al., 2015). Design of a clus-
ter plot is highly flexible, but Yim et al. (2015) and 
Kleinn et al. (2002) narrowed down to three main as-
pects, which were spacing between subplots, geometric 
shape of cluster plot, and number of subplots per 
cluster. Two of which corresponded to our simulated 
factors CLAYOUT and CEXTENT; thus, supporting 
our choice of design factors in this study. In designing 
a cluster plot, expenditure is balanced with information 
gain. Information gain in this study is expressed by the 
level of similarity in species composition between a 
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Figure 3. (a) Mean (θ ) and (b) mean CV (CV ) Jaccard similarity index for comparing species composition between two cluster θ
plots of two different extent of ground area enclosed by a cluster plot for Fushan (open symbols) and Pasoh (filled grey symbols). 
The three comparisons are: (1) CEXTENT = 1000 m2 vs CEXTENT = 2500 m2 (□ and ■), (2) CEXTENT = 1000 m2 vs CEXTENT 
= 10000 m2 (○ and ●), (3) CEXTENT = 2500 m2 vs CEXTENT = 10000 m2 (△  and  ▲). The comparisons are controlled for PAREA 
and CLAYOUT. PAREA are 250 (black symbols), 500 (blue symbols), and 1000 m2 (green symbols). CLAYOUT are square, rect-
angle, and triangle. Red solid lines depict empirical 95% confidence intervals.

more compact and a less compact cluster plot. Every-
thing else being equal, expenditure decreases with a 
more compact cluster plot. For one, traveling time 
between subplots is less. If two cluster plots of differ-
ent compactness produce high similarity in species 
composition, the more compact is preferable consider-
ing the expenditure. This study attempts to recommend 
the choice of a cluster plot design under each stated 
objective along this line of reasoning. 

This study does not assess accuracy of estimated 
JAC and SOR for a particular comparison, e.g. PCON-
FIG = single vs CLAYOUT = square comparison. 
Quantifying the accuracy requires knowing the true 
population values of JAC and SOR. The true values 
are different between the 81 comparisons that we have 
made because each comparison involves two different 
plot designs. To know the true values, we also need 
to sample at all possible sample locations, which is 
impossible. On the contrary, the mean estimates of 
JAC and SOR across 500 random sample locations 
and across 100 iterations (θ ) for a particular com-
parison approximate the true population values, es-
pecially given the narrow E95CI (Figs. 1a-3a). Thus, 
this study more importantly looks at how species 
composition potentially changes when different clus-

ter plot designs are used to assess the stated objec-
tives. 

In general, the results of species composition simi-
larity were consistent between study sites and similar-
ity indices. At Pasoh, the plant and species density is 
6,707 individual ha-1 and 16.4 species ha-1, respec-
tively. In Fushan, it is 4,576 individual ha-1 and 4.4 
species ha-1, respectively. Consistency across study sites 
suggests that outcomes from this study could poten-
tially be generalized to forests within this range of plant 
and species density, and forest ecosystems from natu-
ral lowland tropical forests to subtropical evergreen 
broadleaf forests. Although knowing the exact spatial 
autocorrelation function specific to a forest could lead 
to optimum cluster plot design (Korhonen & Maltamo, 
1991), this consistency suggests that cluster plot de-
signs are versatile. However, forest ecosystems with 
many common and few rare species such as the Bo-
real or cold temperate forests need to be further studied 
as they are exceptional in many studies on species 
richness estimation (Pitkänen, 1998; Magnussen et al., 
2010). Consistency between similarity indices suggests 
that outcomes of this study could potentially be ex-
tended to other indices with similar construction such 
as the abundance-adjusted Jaccard and Sørensen simi-
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larity index (Chao et al., 2005). Yang et al. (2019b) 
have similarly reported consistency in trends between 
JAC, SOR, and their variants when studying the effects 
of plot size and shape on sampling species composition. 

Comparison of species composition between a 
single plot and a cluster plot tries to determine 
whether field effort should be spent in a single large 
plot or several subplots spread out in different geo-
metrical layouts. A single plot typically requires less 
field effort without the need to travel between sub-
plots. However, it is expected that a cluster plot 
would capture a larger variety of plant species. In 
highly heterogeneous forest ecosystems, Green & 
Young (1993) proposed that sampling with many 
small plots spread apart instead of a single large plot 
would capture many unique plant species. Our study 
showed that the choice between single and cluster 
plots depends on PAREA. With larger plots, species 
composition similarity between a single and a cluster 
plot increases; thus, the potential gain of a cluster 
plot in observing diverse species composition dimin-
ishes. At small PAREA, results suggest that triangle 
CLAYOUT is the least effective among the three 
choices. This might be due to triangle CLAYOUT 
having a subplot at the center, which leads to it cap-
turing more plant species that are similar to those in 
a single plot. Despite this, triangle CLAYOUT is still 
effective to some extent because it captures species 
not present in a single plot with the maximum species 
composition similarity between them less than 80%. 
If the choice is between a single plot or a cluster plot, 
we recommend that a cluster plot either of square or 
rectangle CLAYOUT would be preferable than a 
single plot if PAREA is ≤ 500 m2. For PAREA > 500 
m2, we recommend single rectangular plot as sug-
gested by Yang et al. (2019b) without the need to 
travel between subplots. This recommendation is 
based on a threshold of 50% in similarity in species 
composition between a single and a cluster plot as 
we determine that cluster plots are more informative 
with lower level. 

The geometrical arrangement of subplots (CLAY-
OUT) reflects the spatial compactness of a cluster plot. 
Spatial compactness is defined as the ratio of CEX-
TENT to the perimeter of a cluster plot. Among the 
three CLAYOUT, square is the most compact followed 
by triangle and rectangle, e.g. the respective compact-
ness is 12.5, 10.97, and 10.83 for CEXTENT of 2500 
m2. A less compact cluster is attractive because larger 
perimeter leads to smaller covariance between observed 
values of subplots and to greater information gain 
(Kleinn, 1996). This might explain why similarity in 
species composition is consistently the lowest between 
square and rectangle CLAYOUT. Assuming CEXTENT 

of 2500 m2, a moderate 16% increase in travel distance 
leads to similarity values between the two CLAYOUT 
to be less than 52% in Pasoh (Table S2 [suppl.]). This 
implies that local species composition changes quite a 
bit within a short distance in species rich forests such 
as Pasoh. Additionally, comparable spatial compactness 
leads to triangle and rectangle CLAYOUT having the 
highest similarity in species composition. However, 
one should note that information gain due to differen-
tial spatial compactness diminishes as CEXTENT in-
creases. Past studies have pointed towards uncertain 
effects of CLAYOUT on sampling forest attributes. 
Kleinn (1994) and Tokola & Shrestha (1999) found the 
differences in precision between different CLAYOUT 
to be relatively small. On the contrary, Yim et al. 
(2015) observed that CLAYOUT affected precision in 
estimating stand attributes. Spatial compactness di-
rectly reflects the effort spent on travel between sub-
plots for square and rectangle CLAYOUT, but not so 
for triangle CLAYOUT. Assuming moving along the 
perimeter, the travel distance is 200 and 231 m for 
square and rectangle CLAYOUT, respectively, for 
CEXTENT of 2500 m2. Assuming starting at the central 
subplot and then moving along the perimeter, travel 
distance of triangle CLAYOUT is 196 m for the same 
CEXTENT. Thus, field effort is generally less for tri-
angle CLAYOUT due to its unique subplot arrange-
ment. Considering the interaction of PAREA and 
CEXTENT and travel distance, we recommend that if 
CEXTENT is ≤ 1000 m2 and PAREA is ≤ 500 m2, rec-
tangle CLAYOUT is preferred for greater information 
gain. If the choice of a plot design must be a cluster 
plot, triangle CLAYOUT is preferred for CEXTENT > 
1000 m2 and PAREA > 500 m2 because it would require 
less field effort.

Everything else being equal, CEXTENT directly 
reflects operation costs with larger extent of ground 
area enclosed by the boundaries of a cluster implying 
greater travel cost. Spatial autocorrelation between 
subplots is expected to decrease with greater CEX-
TENT (Kleinn, 1994; Yim et al., 2015), which should 
increase information gain on species composition on 
the cluster level. This explains why sampled species 
composition between 1000 and 10000 m2 CEXTENT 
is the least similar, while species composition between 
1000 and 2500 m2 CEXTENT is the most similar. Com-
paring species composition between two different 
CEXTENT is akin to quantifying β-diversity at that 
scale (Magurran, 2004), which could help us better 
understand local-level species turnover. For example, 
JAC is less than 70% for Fushan and 52% for Pasoh 
for the 1000 to 10000 m2 CEXTENT comparison 
(Table S3 [suppl.]) implying that local level species 
turnover is high for species rich forests even when the 
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travel distance only increasesd by about 3 times. One 
could also potentially calculate local-level γ-diversity, 
which is an additive of α- and β-diversity (Lande, 
1996). We expect similarity in species composition to 
continue to decrease with larger CEXTENT beyond 
the levels that we have considered. However, there is 
a limit to the choice of CEXTENT due to available 
resources. If the objective is to sample local-level spe-
cies diversity, we recommend CEXTENT ≤ 1000 m2. 
CEXTENT of 2500 m2 may not be suitable because of 
higher operating costs and high similarity in species 
composition between 1000 and 2500 m2 CEXTENT. 
Larger CEXTENT could potentially straddle different 
ecological strata, which may under-sample a local com-
munity.

Mean CV (CVθ ) represents average variability in 
estimated JAC and SOR of 500 random sample loca-
tions in a simulated iteration. A low value suggests that 
similarity in species composition between two plot 
designs is consistently estimated across a study site. In 
an actual sampling event, only a single set of sample 
locations (analogous to a single “iteration”) is estab-
lished. In that respect, mean CV could be viewed as 
estimated relative sampling error for the single event. 
When sampling for forest timber values such as total 
volume, one strives to lower mean CV by using sample 
designs that offer higher efficiency or produce nar-
rower confidence widths of the estimates (Kershaw 
et al., 2016). This is desirable for both management 
and decision-making aimed to capture such values. 
However, the opposite may be preferred when sampling 
species composition. Results show that increasing 
PAREA effectively lowers mean CV, but it requires 
greater field effort. For example, when comparing 
between a single and a cluster plot, mean CV could 
almost be halved with a four-fold increase in PAREA 
for certain comparisons. In addition, increasing PAREA 
increases similarity in species composition between 
two cluster plot designs, which also implies little in-
formation gained between the two designs. Thus, we 
suggest that mean CV could not be the single deciding 
factor for the choice of implementing a cluster plot 
design. 

PAREA is the design factor that notably increases 
estimated similarity indices and decreases mean CV. 
Larger PAREA means sampling wider local ground 
area, which leads to greater number of observed spe-
cies. This is in line with the classic species-area rela-
tionship (Condit et al., 1996). To study this relation-
ship, we built a species accumulation curve for each of 
the 30 plot designs, which represents cumulative 
number of observed species over number of sample 
locations (Figs. S5 and S6 [suppl.]). For a plot design, 
a species accumulation curve was built for each itera-

tion by cumulating the number of observed species 
from 1 to 500 sampling locations. The 100 species 
accumulation curves were then averaged for the plot 
design. Given a number of sample locations, the num-
ber of observed species is clearly larger for larger 
PAREA, especially for number of sampling locations 
< 100 (solid vs dotted lines in Figs. S5 and S6 [suppl.]). 
Furthermore, the species accumulation curves of 
PAREA = 1000 m2 reaches asymptotes at a faster rate 
than those of PAREA = 250 m2. With a larger number 
of observed species, it is more likely that two plot de-
signs share a larger number of identical species; thus, 
it leads to the strong effects of PAREA on similarity in 
species composition between two plot designs. How-
ever, increasing PAREA is associated with greater cost 
in field plot establishment and species identification 
work, especially in species rich forests such as Pasoh. 
Smaller PAREA could potentially minimize the risk of 
missing individuals (thus, missing species) as field ef-
fort is concentrated in locating all plant individuals and 
species in a small area. Lastly, Green & Young (1993) 
suggested that many small plots would be better than 
a few large ones in sampling plant species that showed 
spatial aggregation in forests.

Kleinn (1996) and Yim et al. (2015) both concluded 
that a generally superior cluster plot design is not pos-
sible because the choice of a design depends on the 
scope of a study, specific forest conditions, and cost 
function to ensure its practicality in the field. Neverthe-
less, we have provided some general recommendations 
on the choice based on the consistent results in this 
study. To the best of our understanding, this study is 
the first to explore potentials and limitations of cluster 
plot design in sampling species composition. There are 
many potential extensions from this study. For one, 
many indices are necessary to describe species diver-
sity (Pavoine & Bonsall, 2011). Construction of other 
similarity indices such as the Bray-Curtis Index and 
Kulczynski Index (Barwell et al., 2015) are different 
from JAC and SOR. Thus, it would be interesting to 
see if these indices behave similarly. Different countries 
utilize a variety of cluster plot designs such as cross-
shape cluster in Brazil, line-shape cluster in Czech 
Republic, and L-shape cluster in Finland (Tomppo 
et al., 2010). Hypothetically, different cluster plot de-
signs would inherently account for spatial autocorrela-
tion in species distribution differently, especially with 
respect to their compactness. Lastly, Yim et al. (2015) 
carried out a time study as they considered time to be 
an important cost factor for optimizing cluster plot 
design. The cost of sampling species composition 
would be different than sampling for forest timber at-
tributes because it involves taxonomic expertise, col-
lection of voucher specimens of unknown species in 
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the field, and laboratory preparation of samples for 
identification. These factors need to be accounted for 
during a forest inventory program. This study has not 
explicitly quantified the trade-off between costs and 
information gain. A future cost-and-benefit study could 
adapt the work from Lynch (2017) and Yang et al. 
(2017). In the context of this study, information gain 
could be defined as a unit decrease in species composi-
tion similarity. A relationship could then be established 
between total cost and the information gain. Total cost 
includes measurement, overhead, and travel costs (Yang 
et al., 2017), which could be obtained from a field 
study. Lastly, this study should appeal to forest manag-
ers and forest ecology communities, who are designing 
cluster plots for plant diversity assessment.
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