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Abstract
Aim of study: Adaptation of silviculture in planted forest may help to mitigate damage due to biotic and abiotic hazards. However, com-

promises have to be found because it is not possible to minimize the risk from all hazards through application of a single forest management 
approach. The objective of this study was to improve a multi-criteria risk analysis (MCRA) method that makes it possible to rank forest 
management alternatives (FMAs) according to multiple risks. 

Material and methods: We defined eight FMAs for maritime pine forests in France, Spain and Portugal. We used as the definition of risk 
the combination of hazard, susceptibility and exposure. Hazard level was estimated using archive data on occurrence and severity of dama-
ging agents over the last few decades. Forest susceptibility to hazards was evaluated by experts who scored the effect on stand resistance of 
eleven silvicultural operations characterizing each FMA. Exposure was estimated as value at stake, which combined forest standing volume, 
simulated with forest growth models, and wood prices.

Main results: Using the PROMETHEE algorithm, we found that the overall ranking of FMAs was consistent across all countries, with 
short rotation plantations to produce pulpwood or energy wood were the least at risk. The ranking was mainly driven by forest values at 
stake. We found that by improving the accuracy of forest values exposed to damage, based on growth models and representative wood pri-
ces, the MCRA outcomes were more useful and realistic.

Research highlights: Our methodology provides a relevant framework to design FMAs that would minimize risks while maintaining 
income.
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Introduction
Planted forests represent 7% of the global forest area 

and their surface is increasing worldwide (Payn et al., 
2015). They are likely to play a significant role in the near 
future to meet the increasing demand for wood products 
and therefore decrease the logging pressure on natural fo-
rests (ICPF, 2013; Pirard et al., 2016). Meanwhile, planted 
forests are also expected to provide many other ecosys-
tem services such as regulating services (e.g. carbon se-
questration, soil conservation and watershed resources) 
but also biodiversity conservation at the landscape scale 
(Brockerhoff et al., 2013; Thompson et al., 2014). Howe-
ver, forests are increasingly affected by biotic and abiotic 
hazards (Lindner et al., 2010; Seidl et al., 2011a; Albert et 
al., 2015). In many parts of the world, pest and diseases 
are expanding their range and increasingly causing dama-
ge thus compromising the delivery of forest ecosystem 
services (Schelhaas et al., 2003; Boyd et al., 2013; Seidl 
et al., 2014). In recent decades, forest disturbance regimes 
have intensified markedly in Europe, resulting in much 
higher levels of damage from hazards such as windstor-
ms, insect outbreaks and wildfires (Lindner et al., 2010; 
van Lierop et al., 2015). Moreover, climatic changes were 
identified as key drivers of this increase (Seidl et al., 
2011c; Boyd et al., 2013) mainly through change in ha-
zard occurrence, duration, severity and intensity (e.g. ex-
treme climatic events such as drought, Allen et al., 2010) 
and forest susceptibility (e.g. water stress reducing tree 
resistance to pest, Jactel et al., 2012b). However, changes 
in forest management can also increase the level of dama-
ge (Jactel et al., 2009). For example, increasing both the 
age of the final cut and the standing volume increase storm 
vulnerability (Gardiner & Birot, 2013). Besides, reduced 
tree diversity can result in higher susceptibility to biotic 
and abiotic disturbances (Jactel et al., 2017). Because 
99.9% of planted forests are monoculture plantations (Ni-
chols et al., 2006), producing ca. 50% of industrial round 
wood (Payn et al., 2015), it is essential that new methods 
for evaluating the risk to planted forests are developed  
and implemented.

Risk depends on the combination of three components 
(Kron, 2005; Jactel et al., 2009): 1) the occurrence and se-
verity of the hazard (e.g. wind, fire, pathogen, pest) which 
is the cause of damage, 2) the susceptibility of the system 
(e.g. trees and forest stand) to the hazard which determi-
nes the amount of damage when it occurs and, 3) the value 
exposed to damage, i.e. the socio-economic impact that 
depends on the value at stake. There is a multitude of bio-
tic (e.g. insect pests, fungal diseases, pathogenic nema-
todes, mammal grazers) and abiotic (e.g. drought, frost, 
storm, fire) hazards in forests. In addition, they do not 
operate independently but often interact or generate cas-
cade effects, leading to synergistic adverse effects on tree 
growth or survival. For example, drought often increases 

tree sensitivity to infection by pest and diseases (Jactel et 
al., 2012b) and windstorm triggers bark beetle outbreaks 
(Temperli et al., 2013). There is thus a need to consider 
forest risks in a holistic perspective, i.e. to operate a pa-
radigmatic shift from individual to multiple risk analyses.

While several reviews demonstrated the possibility 
to reduce stand susceptibility through changes in silvi-
cultural treatments (e.g. Fettig et al., 2007; Jactel et al., 
2009; Klapwijk et al., 2016; Jactel et al., 2017), they 
also pointed out that a given particular operation (i.e. a 
cutting or any tending operation such as pruning or bush 
cleaning…) can have multiple, and sometimes, contradic-
tory effects on stand susceptibility to different damaging 
agents. For example, thinning can improve individual tree 
vigor, through reduced competition, thus increasing indi-
vidual tree resistance to bark beetles (Fettig et al., 2007), 
whereas thinned stands can be more heavily attacked by 
tree defoliators (e.g. pine processionary moth, Régolini 
et al., 2014). It follows that no single forest management 
alternative (FMA) can simultaneously minimize all risks 
of damage and that compromises have to be made.

Several empirical or process-based models have been 
developed to link forest stand management with suscepti-
bility to specific damaging agents and infer on associated 
risks but only a few can deal with two combined hazards, 
e.g. wind and bark beetles (Temperli et al., 2013), drought 
and bark beetles (Lexer et al., 2002) or fire and bark beet-
les (Simard et al., 2011). However, none, to our knowled-
ge, are generic enough to incorporate multiple hazards in 
many different forest conditions. There is thus a need for 
a flexible and robust methodological framework enabling 
to rank different forest management alternatives accor-
ding to their relative exposure to multiple hazards.

Multi-criteria decision analysis (MCDA) methods 
provide a suitable framework and effective techniques 
for finding compromise solutions (Ishizaka & Nemery, 
2013). They are flexible with input data (able to com-
bine qualitative and quantitative information), propose 
mathematical algorithms to solve complex questions of 
data aggregation while being user friendly, thus enabling 
decisions makers to participate in the process (Ishizaka & 
Nemery, 2013). One of the most widely used MCDA me-
thod is PROMETHEE (Preference Ranking Organisation 
Method for Enrichment Evaluation). It is an outranking 
method, typical of the European MCDA school (Brans et 
al., 1986). It has been successfully used to address deci-
sion making problems for risk management (e.g. Linkov 
et al., 2006; Ruzante et al., 2010; Su & Tung, 2013; Liu 
et al., 2016; Doyi et al., 2018) and also forest planning 
(e.g. Huth et al., 2005; Ananda & Herath, 2009; Ghaffa-
riyan et al., 2013; De Barros et al., 2014; Segura et al., 
2014; Schuler et al., 2017) or both (Seidl et al., 2011b). 
In 2012, the method was adapted to forest risk assessment 
and the term MCRA was coined for “Multi-criteria Risk 
Analysis”, which enables ranking forest management 
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alternatives according to their vulnerability to multiple 
hazards (Jactel et al., 2012a).

We focused on forest risks for maritime pine (Pinus 
pinaster Ait), a native and major timber tree species of 
southern Europe, to exemplify our approach (Abad Viñas 
et al., 2016). The study area encompassed three regions: 
Aquitaine (France), North Portugal and Galicia (Spain), 
where maritime pine is the main tree species in productive 
forests and accounts for ca. 47, 45 and 44% of the fores-
ted area, respectively (Sanz et al., 2006; AFN, 2010; IFN, 
2010). Maritime pine is also one of the main harvested 
wood material in the three studied regions (MAGRAMA, 
2011; Dias & Arroja, 2012; DRAAF Aquitaine, 2015). 
Maritime pine forests thus play a major role in the regio-
nal economies. Recently, large disturbances occurred in 
the three regions: in 2009, in Aquitaine, the storm Klaus 
blew down approximately 43 million m3 of wood, which 
represented an economic damage of approx. 2 billion Eu-
ros (Hanewinkel & Peyron, 2013); wildfires that occurred 
in Portugal during 2003 (312,430 ha damaged area) and 
2005 (274,783 ha) were responsible for economic losses 
of over 3 billion Euros (ICNF, 2013); in 1999 the pine 
wood nematode was discovered in Portugal and five 
million trees had been felled by 2008 (Rodrigues, 2008). 
In 2006, forest fires affected an area in Galicia of 86,000 
ha (around 60% covered by trees), being responsible for 
economic losses of 248-336 million Euros (Loureiro & 
Barrio, 2009). In 2017, major fires burnt another 46,000 
ha in Portugal (with 65 fatalities) (Nunes et al., 2019). 
These large-scale events raised a lot of concern among 
foresters about the sustainability of wood production in 
cultivated maritime pine forests. Such a context therefore 
offered a good opportunity to engage with forest stake-
holders in comparing forest management alternatives 
(FMAs) regarding multiple forest risks.

The main objective of this paper is to move a step 
forward and present an enhanced version of MCRA that 
addresses previous limitations. In particular, the study ai-
med at improving two key elements in the multi-criteria 
risk analysis framework, i.e. at proposing and testing: i) 
more accurate estimates of hazards levels, combining oc-
currence and severity and based on archive data instead of 
expert opinion, ii) more meaningful values at stake, based 
on economic valuation of forests using forest growth mo-
dels and real wood prices, again instead of a simple score 
provided by experts. 

Methods
We first present the Forest Management Alternati-

ves (FMAs) designed by forest experts according to lo-
cal silvicultural practices in the three selected regions. 
Then we assess the three components of the risk used in 
this paper as “hazard level”, “forest susceptibility” and 

“wood value at stake” (Fig. 1). They were combined to 
rank the forest management alternatives (FMAs) accor-
ding to associated multiple forest risks in a given region, 
using the outranking method PROMETHEE (Mareschal, 
2013). PROMETHEE was developed by Brans (1982), 
further extended by Brans & Vincke (1985) and Brans &  
Mareschal (1994).

Forest management alternatives (FMAs)

Eleven silvicultural treatments were defined: site 
preparation, fertilisation, regeneration type, tree genetic 
material, stand structure, stand composition, cleaning of 
understorey vegetation, stand clearing, thinning, pruning 
and final harvesting (Table 1). For each treatment, several 
options were considered. The combination of these op-
tions enabled the construction of eight contrasting FMAs 
exploring a wide range of possibilities (e.g. with large 
variation in rotation length, site management techniques 
and tree genetic materials) and with diverse objectives in 
terms of quantity of timber and forest biomass produc-
tion. The FMAs are explained in the next paragraph and 
described in Table 1 under the following simplified na-
mes: M1- High quality, M2- Standard classic, M3- Low 
investment, M4- Short-term with subsidies, M5- Low 
density without thinning, M6- Half-dedicated to biomass, 
M7- Biomass, M8- No management.

Some FMAs are currently applied in the case studies 
regions: for example, the “Standard classic” M2 is very 
common in Aquitaine and in Galicia and aims at produ-
cing timber in the medium-term. “High quality” M1 is 
representative of the objective of producing high quali-
ty timber on the long-term. The “Low investment” M3 
is designed to consider stands in which forest owners in-
vest as little money as possible before getting a return on 
investment with the first thinning. The “Short-term with 
subsidies” M4 is designed considering subsidies for plan-
ting, leading to active silviculture until the first thinning 
and then applying no other treatment until the final cut at 
25 years, which is close to the official Galician Regional 
Government models PP2 (DOG Diario Oficial de Galicia, 
2014). The “Low density without thinning” M5 is aimed 
at limiting thinnings and associated costs by planting at 
final density and harvest earlier. Others FMAs are more 
innovative, like the “Biomass” M7 aiming at producing 
energy wood and pulp-wood rapidly and the “Half-dedi-
cated to biomass” M6 in which half of the stand is early 
thinned for energy wood and the other half is kept longer 
for timber production. They are considered possible op-
tions to restore quickly wood resources for the local fo-
rest-based sector in Aquitaine (Lesgourgues & Drouineau, 
2009) and Galicia following the Klaus storm in 2009. Fi-
nally, “No management” M8 is a FMA with natural re-
generation and no further management. It has no wood  
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production objective. However, harvesting of high-grade 
timber may occur in small private forest properties.

Hazard level assessment 

We let the list of hazards vary with regions for the sake 
of realism but we set as constraint to comprise both abio-
tic and biotic hazards. Therefore, at least two abiotic and 
two biotic hazards were chosen in each region according 
to their local relevance based on local occurrence data for 
the last 10 to 40 years (Table 2 and see Appendix A1 [su-
ppl.]). Hazards included storm, fire, torrential rain, bark 
beetles (Ips sexdentatus Börner, Orthotomicus erosus 
Wollaston, Tomicus piniperda Linnaeus and Tomicus des-
truens Wollaston), game (Capreolus capreolus Linnaeus 
and Cervus elaphus Linnaeus), insect defoliator (Thau-
metopoea pityocampa Denis and Schiffermüller), root 
rot fungus (Heterobasidion annosum Brefeld) and pitch 
canker (Fusarium circinatum Nirenberg & O'Donnell). 
The invasive pine wood nematode (PWN, Bursaphelen-
chus xylophilus Steiner and Buhrern) and drought, even 
though locally relevant in the studied area (southwestern 

Europe) were not included in the analysis. PWN, a qua-
rantine organism within the European Union, was not re-
tained because it requires specific phytosanitary measures 
(mainly sanitary cuts) that were not included in the FMAs 
analysed here. Drought symptoms have been shown lag-
ging one or several years behind the climatic event (Bréda 
& Badeau, 2008) and cannot be easily disentangled from 
damage caused by biotic hazards, making drought severi-
ty difficult to estimate properly.

After, hazard selection, hazard level was defined as 
a combination of mean occurrence and severity; it was 
defined for each region based on archive data (Fig. 1). 
We estimated hazard occurrence as the mean percent of 
forest area or volume damaged each year in the region 
(P1Hi). It was averaged across the longest possible period 
with reliable data, which was often of several decades. 
However, hazard occurrence is not enough to account 
for the relevance of damage. For example in Aquitaine, 
16% of the surface of maritime pine forest have been 
impacted per year by the pine processionary moth since 
1981 (Data from the French Forest Health Department) 
whereas only 1.5% of the volume has been impacted per 
year by storms since 1976 (communication from CNPF, 

Figure 1. Conceptual flow diagram of multi-criteria risk analysis (MCRA) methodology for a given regional  
case study.
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2014). On the other hand, damage caused by the Klaus 
storm (2009) had much larger economic consequences 
on the forestry sector than chronic defoliation by pine 
processionary moth. To account for this issue, we esti-
mated hazard severity as the percent of losses induces 
per area or volume affected (P2Hi) (see more details in 
Table 2). We used various estimates depending on ha-
zards: losses due to occasional damage such as those 
produced by storms, fires or bark beetles are usually well 

assessed and a direct loss on wood price is generally ob-
served, e.g. 86.5% for storms and fire on average (Table 
2). On the contrary, for some other hazards the conse-
quences are often not discernible on the short-term, but 
become visible after a certain amount of time or a certain 
threshold of damage. They operate in a similar way as 
the creeping environmental problems defined by Glantz 
(1994) as “incremental, low-grade, cumulative and long-
term biospheric changes induced by humans”. In this 

Table 1. Maritime pine forest management alternatives (FMAs) numbered from M1 to M8 with corresponding silvicultural treat-
ments and options per treatment in all regions.

Name of  FMA M1- High 
quality

M2- Standard 
classic

M3- Low 
investment

M4- Short-term 
with subsidies

M5- Low 
density without 

thinning

M6-  
Half-dedicated 

to biomass

M7- Biomass M8- No  
management

Objective High quality 
timber > 1.5 m3

Timber 1 to 
1.2 m3

Timber 1 m3 Small timber 0.3 
to 0.4 m3

Small timber 0.3 
to 0.4 m3

Biomass 30t/ha 
and timber 1 m3

Biomass 70 t/ha No objective

Silvicultural treatments

1-Site 
 preparation

Full ploughing 
or double 
ripping, 

broadleaf  trees 
preservation

Strip ploughing 
or single ripping

Smashing 
roller or rotary 

chipping

Full ploughing 
or double 
ripping

Full ploughing 
or double 
ripping

Stump removal, 
full ploughing 

or double 
ripping

Stump removal, 
full ploughing 

or double 
ripping

No

2-Fertilisation Yes Yes No Yes Yes Yes No No

3-Regeneration 
type

Plantation 
1250 stems/ha

Plantation 
1250 stems/ha

Natural regene-
ration

Plantation 
1250 stems/ha

Plantation 
800 stems/ha

Plantation 
2500 stems/ha

Sowing to 
obtain around 
3000 stems/ha

Natural  
regeneration

4-Genetic 
material

Genetically 
improved plants

Genetically 
improved plants

No specific 
material

Genetically 
improved plants

Genetically 
improved plants

Genetically 
improved plants

Seeds from 
graded stands

No specific 
material

5-Stand  
structure

Even-aged Even-aged Even-aged Even-aged Even-aged Even-aged Even-aged Uneven-aged

6-Stand  
composition

Maritime pine, 
broadleaf  

preservation, di-
versified wooded 

undergrowth

Single species 
(maritime pine)

Single species 
(maritime pine)

Single species 
(maritime pine)

Single species 
(maritime pine)

Single species 
(maritime pine)

Single species 
(maritime pine)

Multiple species 
(Mixed maritime 

pine forests)

7-Cleaning of  
the vegetation

Full cleaning at 
5 years and then 
1 cleaning with 
each thinning

Full cleaning at 
5 years old and 
then 1 cleaning 

with each 
thinning

No Full cleaning at 
5 years old

2 cleanings First cleaning 
at 9 years old 
(with biomass 
thinning) then 
1 cleaning with 
each thinning

No No

8-Stand 
clearing

No No Rack creation 
and then1 
clearing

No No No No No

9-Thinnings 5 thinnings 3 thinnings 4 thinnings 1 thinning No 1 biomass 
thinning (1250 
stems/ha), then 

3 thinnings

No Yes, partial 
harvests

10-Pruning Yes No No No No No No No

11-Final 

harvesting

60 years, 
250 stems/ha

40  years, 
300 stems/ha

55 years; 
300 stems/ha

25 years, 
700 stems/ha

25years, 
700 stems/ha

35 years,
300 stems/ha

8-12 years No clear cut
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category, we included herbivore damage (game) (Land-
mann et al., 2015) and insect defoliators like the pine 
processionary moth. It was more difficult to estimate ha-
zard severity for these problems and we mainly relied on 
relative growth loss estimates (Ballon & Hamard, 2003; 
Gatto et al., 2009). To estimate P1Hi and P2Hi, we used 
scientific or grey literature, including regional reports or 
studies in local languages (Appendix A1 [suppl.]). We 
multiplied the two values to provide an estimate of ab-
solute hazard level in each region. It was further divided 
by the sum of all hazards levels in a given region in order 
to produce ‘relative level’ per hazard and region (eq. 1). 
These values were used to weight criteria in the MCRA 
(Fig. 1).

𝑊𝑊𝐻𝐻𝐻𝐻 = 𝑃𝑃1𝐻𝐻𝐻𝐻 ×𝑃𝑃2𝐻𝐻𝐻𝐻
∑ 𝑃𝑃1𝐻𝐻𝐻𝐻 ×𝑃𝑃2𝐻𝐻𝐻𝐻𝑛𝑛

𝑖𝑖=1
                    (eq. 1)

Where WHi is the relative weight of hazard Hi; P1Hi is 
the mean percent of forest surface or volume damaged by 

hazard Hi each year, P2Hi is the loss in wood biomass or 
price in a given region due to hazard Hi (n=6 for Aquitai-
ne, n=6 for Portugal and n=4 for Galicia). 

For example (see in Table 2), the average volu-
me affected by storms per year was 1.5% in Aquitaine 
(P1storm=0.015). Then, the loss due to storms was esti-
mated to be 86.5% of wood price (P2storm= 0.865), using 
the example of what happened after the Klaus storm 
(Lesgourgues & Chantre, 2009). Therefore storm level 
in Aquitaine was estimated as P1storm×P2storm=0.0130. 
The sum of P1Hi×P2Hi for all hazards in Aquitaine was 
0.0746. The relative weight of storm in Aquitaine was 
thus 0.013/0.0746=0.174 (17.4%). The calculation of ha-
zard relative weights in Aquitaine is fully documented in 
Tables 2 and 3 and details for Portugal and Galicia are 
provided in Table 3 and Appendix A1 [suppl.].

Last, to account for the fact that the number of hazards 
varied between regions and might bias the comparison of 
MCRA outcomes across regions, we re-did the analyses 
with a selected set of four hazards by region, each of them 

Table 2. Hazard assessment for maritime pine in Aquitaine.

Hazards (H)
Type and source of information 
for impacted volume or surface 
each year

P1H (%) Type of 
damage

Type and source of information 
for hazard severity

P2H (%) Relative 
w e i g h t 
(WH)

Storm Data compilation from CNPF/
IDF (communication from CNPF, 
2014) and NFI (Colin et al. 2010)

0.0150 Mortality Huge loss on wood prices (Les-
gourgues and Chantre 2009)

0.8650 0.1741

Fire Data compilation from burnt sur-
faces 1980-2006 (Ministère de 
l'Agriculture et al. 2008)

0.002 Mortality Huge loss on wood prices (similar 
to loss from storm, source CRPF 
Aquitaine)

0.8650 0.0232

Defoliator Calculation on Forest Health Data 
monitoring (Régolini et al. 2014)

0.1600 Growth 
loss

Financial analysis (Gatto et al. 
2009): difference in revenues 
=17.3%

0.1730 0.3713

Bark beetle Book from Forest Health Depart-
ment (Nageleisen et al. 2010) and 
data produced after Klaus storm 
(Colin et al. 2010)

0.0040 Mortality Data from last storm (similar to 
loss from storm, source CRPF 
Aquitaine)
 

0.9400 0.0504

Game Report from Irstea (Ballon and Ha-
mard 2003)

0.0100 Browsing Report from Irstea (Ballon and Ha-
mard 2003)

0.0200 0.0027

Root rot 
fungus

Expert knowledge based on the 
proportion of downgraded wood 
because of the fungus during the 
harvest

0.0300 Mortality Data from expert knowledge ba-
sed on the fact that the wood sor-
ted because of the fungus is sold 
at prices similar to wood caught 
in a fire or wood damaged after 
storms

0.9400 0.3783

The defoliator is the pine processionary moth Thaumetopoea pityocampa, the root rot fungus is Heterobasidion annosum. “Bark 
beetle” refers to Ips sexdentatus. P1H is hazard occurrence estimated as mean area or volume affected by a hazard each year. P2H is 
% of losses induced per area or volume affected. The WH is the product of P1H by P2H divided by the sum of all hazard levels in a 
given region giving the relative losses per year induced by a given hazard.
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being present in at least two regions (Table 4). This chan-
ge had no major impact on the conclusions.

Forest susceptibility assessment

Following the method developed by Jactel et al. 
(2012a), we used expert panels to evaluate maritime pine 
stand susceptibility to multiple hazards. 

Panels: In each region, a panel of experts was gathered 
during a one-day workshop. It was highly recommended 
to have several experts per hazard but one expert could 
be consulted about different hazards. Experts were highly 
qualified researchers in forest ecology or forest managers 
with expertise in targeted hazards and maritime pine sil-
viculture, belonging to the leading universities, research 
institutes, advisory companies or risk management au-
thorities of each region. The number of experts per panel 
was between 10 and 15 people, because bigger groups are 
difficult to moderate and the number of available experts 

in each region was anyway limited. The number of ex-
perts participating in the panels and the expertise covered 
are detailed in Appendix A2 [suppl.].

Scoring method: Regional experts had to reach a con-
sensus before giving a score from 0 to 1 for the effect of 
each silvicultural treatment (Table 1) on stand susceptibi-
lity to individual hazards. For each silvicultural treatment, 
they identified the "reference" option triggering the lowest 
amount of damage for a given hazard and gave it a score 
of zero. Then the experts gave a score of 0.25, 0.50, 0.75, 
or 1.0 respectively, to any other option that would increa-
se a little amount, a moderate amount, a large amount or 
an extreme amount the damage due to a given hazard as 
compared to that of the reference option. We note that this 
was a semi-quantitative approach by which experts pro-
duced scores according to a relative scale from non-sus-
ceptible (0) to most susceptible (1) to a given hazard. Sti-
ll, in multi-criteria decision analysis it is not the absolute 
numbers (net flows) that matters to qualify a given option 
(here a FMA) but its ranking, i.e. relative position with 

Table 4. Relative weights of four hazards common to at least two regions.

Hazards
Relative weight

Aquitaine Portugal Galicia

Storm 0.6952 0.0290 0.4714

Fire 0.0927 0.8323 0.4598

Bark beetles 0.2014 0.0815

Game 0.0107 0.0007

Pitch canker 0.0572 0.0681

Fusarium circinatum is responsible for the pitch canker. The mention “Bark beetles” refers to Ips 
sexdentatus only in Aquitaine, and to the four main species, e.g. Ips sexdentatus, Orthotomicus 
erosus, Tomicus piniperda and Tomicus destruens in Portugal.

Table 3. Hazard assessment for maritime pine in Aquitaine.

Hazards
Relative weight

Aquitaine Portugal Galicia

Storm 0.1741 0.0168 0.4714

Fire 0.0232 0.4804 0.4598

Torrential rain 0.0151

Defoliator 0.3713 0.4077
Bark beetles 0.0504 0.0471
Game 0.0027 0.0007
Root rot fungus 0.3783
Pitch canker 0.0330 0.0681

The defoliator is the pine processionary moth Thaumetopoea pityocampa, the root rot fungus 
is Heterobasidion annosum. “Bark beetle” refers to Ips sexdentatus. P1H is hazard occurrence 
estimated as mean area or volume affected by a hazard each year. P2H is % of losses induced per 
area or volume affected. The WH is the product of P1H by P2H divided by the sum of all hazard 
levels in a given region giving the relative losses per year induced by a given hazard.
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respect to the others (i.e. whether it should be preferred or 
not to the others).

At the end, for each of the eight FMAs, scores were 
summed across the eleven silvicultural treatments (Tk) 
that characterized a FMA (Mj), for each individual hazard 
considered (Hi), in order to get a general score of suscep-
tibility (S) (Fig. 1) for the given hazard and a given FMA 
(eq. 2):

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =∑ 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
11

𝑘𝑘=1
                (eq. 2)

Susceptibility scores are given in Appendix A3 [suppl.]

Assessment of wood value at stake

The score of forest value at stake, that was usually 
provided by experts in Jactel et al. (2012a), was here re-
placed by a quantitative estimate of the wood standing 
value of a virtual forest that is composed of N stands of 
one hectare corresponding to each year of a rotation cycle 
of N years. The wood standing value was estimated for 
each stand (i.e., the entire virtual forest) and then divided 
by the number of stands (equal to the number of years in 
the rotation cycle). This provided the value at stake of a 
one hectare of this “virtual forest” where all ages and co-
rresponding wood values would be represented, irrespec-
tive of the rotation length (age of trees at final harvesting 
time). This method of calculation enabled testing for the 
impact of all hazards on all possible ages of a stand mana-
ged with a given FMA. It should be noted that age effects 
were taken into account when assessing the susceptibility 
of stands to different hazards.

To evaluate the forest growing stock, each FMA, ex-
cept M8, was simulated using a maritime pine growth mo-
del adapted to regional conditions. The models used were 
PBRAVO (Páscoa, 1987) in Portugal, GesMO (González 
González et al., 2012) in Galicia and the Lemoine model 
in Aquitaine (Lemoine, 1995; Meredieu & Labbé, 2006). 
Each model had its own equations (see the FORMODELS 
database http://www.iefc.net/formodels_database_forest_
modeles_liste/ for details). To start a simulation, all the 
models need the values of initial tree density, stand basal 
area at an initial age of 10 – 12 years old and a site index 
(dominant height at a reference age; one average value 
per region). Fertilisation and improved genetic materials 
were taken into account by using higher site indices. The 
estimation of wood volume produced in M8 (No manage-
ment) was based on data from the study of Sánchez-Orois 
& Rodríguez-Soalleiro (2002) for Galicia and from selec-
ted national forest inventory plots of maritime pine stands 
with irregular structure in Aquitaine (IGN, 2012). As we 
missed similar data for Portugal, we used the Aquitaine 

data to simulate M8 in Portugal after checking the plausi-
bility of productivity figures.

Outputs of growth models were stand characteristics 
at every age including tree density, basal area, mean hei-
ght, mean diameter, and total volume. Therefore growing 
stock in cubic meters was available for all stands com-
posing the “virtual forest” for each FMA. Then current 
wood prices (S4) were used to convert the cubic meters 
into Euros and these values were averaged across stands 
to provide a wood standing value (EM) for the “virtual 
forest” corresponding to each tested FMA. Wood pri-
ces were extracted from regional data based on wood 
sales in Aquitaine (2014), information from the Cen-
tro PINUS in Portugal (2016) and information from the 
“Asociación Forestal de Galicia” and auctions of the 
Galician Regional Forest Administration for Galicia  
(2011-2016). 

We defined vulnerability as the product of stand sus-
ceptibility to a particular hazard by its exposed value (Jac-
tel et al., 2012a) (Fig. 1). To estimate the vulnerability of 
a FMA to a particular hazard (VM,H), we multiplied the 
wood standing value in Euros (EM) by the score of forest 
susceptibility (SM,H) (eq. 3)

𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝐸𝐸𝑀𝑀𝑀𝑀               (eq. 3)

Data integration into MCRA tool and sensitivity 
tests

We used Visual PROMETHEE ©, a multi-criteria 
decision analysis software (Mareschal, 2013) to pro-
cess the data. The software can deal with quantitative 
and qualitative input data and implements the PROME-
THEE algorithm and GAIA multi-criteria decision tools  
(Mareschal, 2013).

We ranked the FMAs (Mj) according to multiple crite-
ria, using as criterion the maritime pine forest vulnerabili-
ty to a given hazard (VMj,Hi). We used the relative level of 
hazard to weight the criteria (WHi). One multi-criteria de-
cision matrix was thus built per region and the 3 matrices 
were incorporated in Visual PROMETHEE © (Appendix 
A5 [suppl.]).

We performed PROMETHEE II analyses (Brans et 
al., 1984; Brans et al., 1986) to make a complete ran-
king of FMAs according to multiple risks (see Jactel et 
al., 2012a for details). As main output, we used the net 
flow  , which is the difference between outgoing  + and 
incoming  - flows. The outgoing flow + estimates how 
far a given FMA outranks other FMAs and the incoming 
flow -, estimates how far it is outranked by other FMAs.

The calculation of   needs the choice of a preference 
function, which translates the difference in criterion value 
between two FMAs to a preference value ranging from 
0 to 1, thus enabling the combination of several criteria. 

http://www.iefc.net/formodels_database_forest_modeles_liste/
http://www.iefc.net/formodels_database_forest_modeles_liste/
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Each preference function is associated with a preference 
threshold (which is the smallest difference that is conside-
red sufficient to generate a true preference). As in the Jac-
tel et al. (2012a) study, we chose the V-shape preference 
function for all criteria because preference was likely to 
decrease proportionally to both susceptibility and value 
at stake. The distribution of vulnerability per FMA and 
per hazard, which led us to choose the V-shape model, is 
available in Appendix A6 [suppl.]. For each hazard and 
region, we sorted the vulnerability values in ascending or-
der, calculated increment in vulnerability values between 
two successive FMAs and averaged increment values. 
Then we averaged the mean increment values across all 
hazards by region, which we used as preference threshold. 
The preference thresholds were 4238 for Aquitaine, 2987 
for Portugal and 1419 for Galicia.

Because the main objective of the present study was 
to identify which FMAs were more or less at risk com-
pared to others, we decided to set the decision rule to 
“minimize” all criteria, i.e. to minimize the product of 
exposure, vulnerability and hazard for any damaging 
agent considered. The classification would then rank first 
the FMAs least at risk. We also used the multiple scena-
rios tool in Visual PROMETHEE© to combine the three 
multi-criteria regional decision matrices and then provide 
an overall complete ranking of the FMAs irrespective of 
the regional case studies.

We then performed several types of sensitivity tests to 
assess the relative importance of the three risk compo-
nents, hazard level, forest susceptibility and wood value 
at stake, in the ranking of FMAs. To rank FMAs irrespec-
tive of hazard agents, we set all weights to be equal. Then 
to rank FMAs irrespective of wood values at stake, we 
used only the susceptibility scores (S) instead of vulne-

rability (V) in the multi-criteria decision matrix. We also 
combined the two by setting all weights equal and ran-
king FMAs only according to their susceptibility. Finally, 
we tested the impact of the number of hazards taken into 
account by doing the analysis only with the four hazards 
selected in Table 4.

Results
Wood values at stake

The forest standing values (E) greatly varied between 
FMAs and to a lesser extent between regions for a given 
alternative (Fig. 2). Standing values increased with the 
duration of forest rotation (e.g. from M4-M7 to M1-M3) 
with the exception of M8 where the low quality of forest 
products explained a low value at stake. On average, stan-
ding values were generally higher in Aquitaine than in the 
other two regions due to higher wood prices in this region 
(Appendix A4 [suppl.]).

Complete ranking of FMAs according to  
associated risks

The ranking of FMAs was remarkably consistent 
across regions (Fig. 3) except for the “No management” 
(M8) and the “Low density without thinning” (M5) alter-
natives. The ranking of these two FMAs greatly varied 
between regions, being better ranked in Aquitaine than 
in Galicia. This is likely due to difference in hazard rela-
tive weights and susceptibility scores, as values at stake 
were quite similar (Fig. 2). The most preferred FMA was 
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Figure 2.  Forest standing value per forest management alternative (FMA) for each region (€/ha).
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always the “Biomass” (M7), followed by the “Short rota-
tion” (M4). These two FMAs had in common short rota-
tions (from 9 to 25 years) and produce small diameter tim-
ber or wood biomass. The least preferred FMAs (at higher 
risk) were the “High quality” (M1) and “Low investment” 
(M3), which were characterized by long rotations (ca. 55-
60 years) and high expectation in terms of forest products 
(large stem wood) (Fig. 3 and Fig. 4a). “Standard” (M2) 
and “Half dedicated” (M6) were intermediate, being of 
medium rotation length (35-40 years) with an objective of 
stem wood production. 

Using only four common hazards agents (Fig. 3) did 
not change the ranking of FMAs, except for M8 in Aqui-
taine and M8 and M3 in Portugal, which were ranked 
lower than in the analysis with all hazards.

Ranking of FMAs to assess the relative  
importance of the three risk components 

Setting all weights to equal, i.e. considering all hazards 
to be of equal damaging effect within a given region, 
hardly changed the ranking of FMAs (Fig. 4b). 

By contrast, considering only the susceptibility of 
FMAs (i.e. value at stake not taken into account), dras-
tically changed their ranking (Fig. 4c and Fig. 4d). The 
most preferred FMAs (least susceptible) were the stan-
dard alternatives (M1, M2 and to a certain extent M4) 
which were characterized by the use of genetically impro-
ved material, planted at low density and with several thin-
ning operations. The least preferred were the biomass al-
ternatives (M6 and M7) which were characterized by high 
density planting and no or few thinning operations. Using 

hazard levels to weight susceptibility criteria hardly chan-
ged the ranking of FMAs (Fig. 4c vs. Fig. 4d).

Discussion
The methodological framework that we presented 

in this study represents a step forward for multiple risk 
analyses in forests. In particular, we improved the MCRA 
proposed by Jactel et al. (2012a) by providing more ob-
jective and accurate estimate of two components of risk, 
namely hazard level and the value at stake of forest (ex-
posure value to damage). 

The relevance of the improved hazards level evalua-
tion appears more clearly when comparing the relative 
importance of the four main hazards agents shared by the 
three regions. Table 4 shows that storm importance was 
considered higher than fire in Aquitaine where landscape 
and climate is more favourable to fight against fires, whe-
reas it is the other way round in Portugal. In Galicia, both 
storm and fire are the major concerns. This is consistent 
with what was recently observed in the regions: Aqui-
taine faced two major storms in the past 15 years (Colin 
et al., 2010), whereas Portugal and Spain are among the 
Southern European countries with the highest percentage 
of burnt forest every year since 1980 (San-Miguel-Ayanz 
et al., 2016). Moreover, Galicia was one of the two Spa-
nish regions most affected by the Klaus storm (see the 
FORESTORMS database http://www.iefc.net/storm/ for 
details) and it ranks first in Spain for the surfaces affec-
ted by fires during the period 2001-2010 (ADCIF, 2012). 
Bark beetles were considered more important in Aqui-
taine than in Portugal, probably because past important 

Aquitaine Portugal Galicia All regions

Net flow


All H 4 H All H 4 H All H 4 H All H 4 H

Figure 3.  Outcomes of PROMETHEE complete ranking for maritime pine forest management alternatives (FMAs) in 
3 regions, Aquitaine, Portugal and Galicia and all regions together. FMAs with a net flow of -1 would be the most at 
risk and those at +1 would be the least at risk. For each region, analysis with all hazards is presented on the left (called 
“All H”) and analysis with 4 hazards is presented on the right (called “4 H”).

http://www.iefc.net/storm/
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Figure 4.  Ranking of the 8 forest management alternatives (FMAs) for 
all three regions together (Aquitaine, Portugal and Galicia): a) based 
on forest vulnerability as criteria and hazard level as weight of criteria; 
b) based on forest vulnerability as criteria and hazard level set equal 
(equal weight); c) based on susceptibility values as criteria and hazard 
level as weight of criteria; d) based on susceptibility values as criteria 
and hazard level set equal (equal weight). FMAs with higher net flow 
are preferred to those with lower net flow because they are less at risk 
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storms in Aquitaine triggered two major bark beetles out-
breaks (Aumonier & Maugard, 2006; DSF, 2010). Game 
and Fusarium circinatum are not of major concern in any  
of the regions.

Sensitivity tests with the entire dataset showed that ha-
zard levels (used as weights in the MCRA) had a negligi-
ble effect on the ranking of FMAs in terms of associated 
risks. This may be because we considered a high number 
of hazards agents together, which may have levelled out 
their individual effect, resulting in something similar to 
the equal weight option. This was confirmed by the ran-
king of FMAs based on their susceptibility to a number 
of hazards reduced to four (Fig. 3). In such situation, two 
FMAs were ranked worse, M8 in Aquitaine and M3 and 
M8 in Portugal. They have in common low susceptibili-
ty scores for the two hazards removed from the analysis 
(the insect defoliator and the root rot fungus for Aquitaine 
and the insect defoliator and the torrential rain for Portu-
gal, respectively; see S3). This suggests that the number 
and the identity of hazards retained for the multi-criteria 
analysis might influence the overall risk ranking and that 
forest managers have to be consulted to set priorities ba-
sed on their risk perception. 

The sensitivity tests showed that when setting weights 
equal, i.e. considering equal hazard levels, the ranking of 
FMAs hardly changed (Fig. 4b) whereas when risk was 
reduced to susceptibility (i.e. without taking into account 
value at stake, Fig. 4c and Fig. 4d) the ranking of FMAs 
completely changed (Fig. 4c). Wood values at stake thus 
emerged as main drivers of risk ranking. The FMAs most 
at risk were those with highest values at stake, e.g. M1, 
M2 and M3 (Fig. 2). They were also the management al-
ternatives with the longest rotation length (Table 1). This 
could be explained as the result of a longer period of time 
during which forest damage can occur, such as those due 
to occasional hazards (e.g. storms: Gardiner & Birot, 
2013) or those that accumulate such as creeping hazards 
(e.g. insect defoliation or drought). Reciprocally, forest 
damage can be avoided if clearcutting was applied in the 
stand before the hazard occurs (Gardiner & Quine, 2000; 
Dhôte, 2005; Jactel et al., 2012b). Forest growing stocks 
are also higher in longer rotations, thus increasing the vo-
lume of damage (e.g. volume of windthrow) if affected by 
hazards (e.g. storms, Seidl et al., 2011a). Because forest 
values at stake were calculated by combining wood vo-
lume and wood price, the quality of products (timber vs. 
biomass energy wood) had also a great impact on standing 
value (Fig. 2). One might argue that when experts scored 
the silvicultural treatments for their susceptibility to ha-
zards, they may have unconsciously overestimated those 
associated with FMAs designed to produce high value 
products. This was not the case, as demonstrated by our 
sensitivity analysis where values at stake were set equal: 
the FMAs most at risk (e.g. M1 and M3, Fig. 4a) were 
ranked as least susceptible (Fig. 4c).

Because new hazards may emerge in the future such 
as invasive pest species (Kenis et al., 2008; Seebens 
et al., 2017), or the occurrence of existing ones might 
change due to landscape or climate evolution, it remains 
important to adapt forest management in order to redu-
ce stand susceptibility per se. The sensitivity test with 
no value at stake and hazard weights set equal revealed 
that the least resistant maritime pine plantations to a lar-
ge array of hazards would be those produced by M6 or 
M7 (Fig. 4d). Their main differences with other FMAs 
are their high stand density, absence of thinning and their 
short rotation length. These silvicultural treatments were 
considered by experts to sharply increase stand suscep-
tibility to fire due to their effects on fuel accumulation 
(Fernandes & Rigolot, 2007). High stand density is also 
known to reduce individual tree vigour, which may re-
sult in higher sensitivity to bark beetle attacks (Fettig et 
al., 2007). Reduced distance between neighbouring trees 
in dense pine plantations can also facilitate the transmis-
sion of root rot fungi through root contact (Garbelotto  
& Gonthier, 2013).

There are four main limitations to our study. First, 
the combination of heterogeneous sources and the lack 
of accurate and direct figures may have limited the ac-
curacy of hazard assessment. It remains very difficult to 
obtain quantitative estimates of hazards occurrence due to 
the lack of a European-scale monitoring network where 
causes of damage are identified as well as their econo-
mic consequences. Still, since MCRA uses weights (re-
lative levels of hazards) for criteria (FMA vulnerabilities 
to hazards), the use of absolute quantitative data is not 
imperative and qualitative data are as relevant as quan-
titative data, as long as scores are properly used to pro-
duce consistent relative ranking positions. Second, FMA 
susceptibility was estimated with the help of experts due 
to the lack of experimental studies on this topic, and yet 
only one panel per region could be gathered. As risk as-
sessment also depends on risk aversion (Hanewinkel et 
al., 2011), it is difficult for experts to provide purely ob-
jective estimates. It would be advisable in the future to 
organize several panels of experts (Jactel et al., 2012a) 
and use structured forecasting approaches (e.g. the Del-
phi method: MacMillan & Marshall, 2006; Salas-Garita 
& Soliño, 2019) to elicit expert opinions so as to come 
to a consensus on risk rating. We can also use quantitati-
ve technics such as Saaty’s pairwise comparison (see in 
Diaz-Balteiro et al., 2016) provided that the number of 
experts are large enough to do so. Third, we could only 
estimate stand value at stake for even-aged stands using 
available growth models for maritime pine, preventing us 
from testing other FMAs based on uneven-aged forestry 
even though we assume that this type of structure would 
perform better in case of hazard. Fourth, the susceptibility 
of a given stand might depend on that of neighbouring 
stands, particularly for hazards with contagion dynamics, 
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like storms or fire. It would be then advisable to upscale 
forest risk analysis to the landscape level.

Conclusions
Our MRCA methodology provides a solid starting 

point for more detailed studies incorporating the concept 
of multiple risks in forest planning when no modelling 
tools are available. 

First, we highlighted the great importance of forest 
value at stake for ranking FMAs according to vulnera-
bility to multiple hazards. We showed that short rotation 
forestry is less prone to risk due to a reduced probabi-
lity of being hit by large disturbances with long return 
periods (e.g. storm, fire, bark beetles) but, above all, to 
the lower economic value of standing growing stock 
(and also the lower operational costs for reforestation). 
However, wood biomass production is also probably 
less profitable for forest owners due to reduced reve-
nues (Schwarzbauer & Stern, 2010) so forest owners 
have to combine risk aversion and gain expectation. In 
addition, managers may consider paying insurance to 
cover losses due to forest damage. The next step would 
be thus to combine risk and profitability as criteria to 
rank FMAs and thus propose more realistic advice to  
forest managers.

Second, we restricted our analysis to pure stands, focu-
sed on wood production and without any interaction with 
the other components of the landscape (hazard propaga-
tion, benefits of surrounding patches of diverse forests...). 
However there are other silvicultural options that could 
reduce forest risks while maintaining high productivity, 
in particular the use of tree species mixtures (Zhang et 
al., 2012; Gamfeldt et al., 2013; Jactel et al., 2017; Jac-
tel et al., 2018). Finally, to compare more complete sets 
of forest management alternatives, more criteria related 
to forest value could be included in the decision-making 
process such as the provision of ecosystem goods (de-Mi-
guel et al., 2014) and services (Gamfeldt et al., 2013; 
Branco et al., 2015), which are increasingly taken into 
account when assessing forest profitability (Deal et al., 
2012). Forest price volatility could be also considered as  
additional hazard.

A way forward to test more combinations of silvicultu-
re treatments and to identify FMAs reducing risks while 
increasing the provision of services will be to design fo-
rest growth models (Seidl et al., 2010) able to model stand 
evolution under several types of forest management and 
hazard dynamics. This will require knowing trends in ha-
zard occurrence in a given region and identifying linking 
functions between stand features (including species choi-
ce and composition), resistance to hazards (Pukkala et al., 
2005; Seidl et al., 2007) and delivery of services (Lin-
droth et al., 2009). Model outcomes could be then used 

as criteria in multi-criteria decision analyses where forest 
stakeholders would be invited to weight the criteria accor-
ding to the ecosystem services they expect from forests, 
with the objective to identify tradeoffs and synergies.
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