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Abstract
Aim of study: To develop a statistical model framework to analyze longitudinal wind-damage records while accounting for 

autocorrelation, and to demonstrate the usefulness of the model in understanding the regeneration process of a natural forest.
Area of study: University of Tokyo Chiba Forest (UTCBF), southern Boso peninsula, Japan.
Material and methods: We used the proposed model framework with wind-damage records from UTCBF and wind metrics (speed, 

direction, season, and mean stand volume) from 1905–1985 to develop a model predicting wind-damage probability for the study area. 
Using the resultant model, we calculated past wind-damage probabilities for UTCBF. We then compared these past probabilities with 
the regeneration history of major species, estimated from ring records, in an old-growth fir–hemlock forest at UTCBF.

Main results: Wind-damage probability was influenced by wind speed, direction, and mean stand volume. The temporal pattern in 
the expected number of wind-damage events was similar to that of evergreen broad-leaf regeneration in the old-growth fir–hemlock 
forest, indicating that these species regenerated after major wind disturbances.

Research highlights: The model framework presented in this study can accommodate data with temporal interdependencies, and the 
resultant model can predict past and future patterns in wind disturbances. Thus, we have provided a basic model framework that allows 
for better understanding of past forest dynamics and appropriate future management planning.

Additional keywords: dendrochronology; tree regeneration; wind-damage probability model; wind disturbance.
Abbreviations used: intrinsic CAR model (intrinsic conditional autoregressive model); MCMC (Markov chain Monte Carlo); 
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Introduction

Wind is a major disturbance in the forests of the 
Japanese archipelago and in other parts of the world 
(e.g. Nakashizuka & Yamamoto, 1987; Peterson, 
2000; Svoboda et al., 2014). Wind causes damage to 
established trees and provides opportunities for trees to 
regenerate in natural forests (Abrams & Orwig, 1996; 

Abrams et al., 1999). Many important features of natural 
forests, including structure, diversity, and dynamics, 
are influenced by wind disturbances (e.g. Ulanova, 
2000; Mitchell, 2013). However, these disturbances 
cause significant economic losses for forest managers 
(e.g. Peterson, 2000). Therefore, understanding wind 
disturbance in a given forest is key to ecologically and 
economically sustainable management. Furthermore, 
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the frequency and severity of catastrophic wind events 
(typhoons, hurricanes, tornados, derecho, etc.) have 
increased and are predicted to increase further as a result 
of climate change (Banholzer et al., 2014; Gregow et 
al. 2017). Thus, it is critical that scientists and land 
managers have a comprehensive understanding of how 
significant wind events effect forests in various global 
regions.

The first step toward mitigating wind damage 
is understanding the relationships between wind-
damage probability and influential biotic and abiotic 
factors (e.g. Gardiner et al., 2008; Kamimura et al., 
2008; Hanewinkel et al., 2008; Albrecht et al. 2012). 
Previous studies have developed models that predict 
wind-damage risk and can be used to minimize or 
mitigate serious wind damage. These models can be 
divided into two classes, each with its own advantages 
and disadvantages: mechanistic models (e.g. Peltola et 
al., 1999, Gardiner et al., 2000, Gardiner et al., 2008) 
and statistical models (e.g. Hanewinkel et al., 2008, 
Albrecht et al., 2012). 

Statistical models, the class to which the model 
presented in this study belongs, are easier to develop 
and implement than are mechanistic models. They 
generally require less data and information on the 
mechanisms of wind damage than do mechanistic 
models (i.e. mechanistic models require many input 
parameters). However, low applicability and, at times, 
low prediction accuracy are disadvantages of statistical 
models. These disadvantages can be caused by the 
use of inappropriate models, resulting in misleading 
conclusions and inaccurate prediction models (i.e. 
the statistical model combined with the estimated 
parameters) even when data are sufficient. Secondly, 
the use of limited data can lead to a lack of applicability 
over space and time for statistical models. For example, 
a model developed from data obtained from a single 
wind event may be a poor predictor of damage caused 
by another wind event (Kamimura et al., 2016).

One of the objectives of this study was to address the 
first potential cause of inadequate statistical models, i.e. 
inappropriate models. We present a statistical model that 
can analyze longitudinal wind-damage data obtained 
from fixed locations, thereby appropriately addressing 
autocorrelation. Autocorrelation can result in an inflated 
sample size and underestimated variance, exaggerating 
the effects of explanatory variables (Lichstein et al., 
2002). Wind-damage data have been analyzed with 
various statistical models, including artificial neural 
networks (Hanewinkel, 2005), linear regression 
(Schütz et al., 2006), the weights of evidence method 
(Schindler et al., 2009), logistic regression (Schindler 
et al., 2009; Valinger & Fridman, 2011), generalized 
linear mixed models (Hanewinkel et al., 2008; Albrecht 

et al., 2012; Donis et al., 2018), generalized additive 
models (Schmidt et al., 2010), and classification and 
regression trees (Albrecht et al., 2012). However, 
autocorrelation was not appropriately addressed in 
most cases. For example, although autocorrelation 
in the residuals was assessed, it was not considered 
in parameter estimation (Hanewinkel et al., 2008; 
Schindler et al., 2009). Hanewinkel et al. (2008) found 
considerable temporal autocorrelation in the residuals of 
logistic regression models, modeled the autocorrelation 
with autoregressive techniques, and added a resultant 
autocorrelation component to their prediction models, 
but autocorrelation was not considered in parameter 
estimation in the logistic models. Schindler et al. (2009) 
assessed spatial autocorrelation in the residuals of their 
logistic model, but did not modify their prediction 
model because the spatial autocorrelation was deemed 
minor. A few studies have introduced terms to detect 
spatial autocorrelation in damage severity (Martin-
Alcon et al., 2010; Hanewinkel et al., 2014).

The model presented here shares the second 
disadvantage associated with many statistical models, 
namely limited data. If the data used to develop a model 
are not comprehensive, the resulting predictions are 
generally inaccurate for conditions that differ from those 
under which the data were obtained. In our case, we 
analyzed longitudinal data from fixed locations, so their 
predictive accuracy is likely to be low when applied to 
other locations. However, accuracy is not problematic 
when this model is used to make predictions across 
time for the target locations. Moreover, this model 
may partially overcome the hindrance of limited data, 
as it can estimate inaccurate or incomplete data while 
estimating other model parameters.

 The primary purpose of this study was to present 
a flexible model framework for analyzing longitu
dinal wind-damage data that adequately addresses 
autocorrelation and inaccurate or incomplete data. This 
framework is particularly useful for long-term forest 
datasets, such as those maintained by universities, 
institutes, and federal or local governments (Nilsson 
et al., 2004; Usbeck et al., 2010; Brázdil et al., 2018). 
In an example of model application, we reanalyzed an 
85-year wind-damage record from the University of 
Tokyo Chiba Forest (UTCBF; Fig. 1), southern Boso 
Peninsula, Japan (Abrams et al., 2017), and developed 
a model that predicted wind-damage probability for the 
entire forest area.

Our secondary objective was to demonstrate the 
usefulness of our model in understanding regeneration 
processes in a natural forest. We estimated the temporal 
pattern in the number of wind-damage events during 
an 80-year period using the model for UTCBF and 
compared these predicted estimates to tree regeneration 
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data obtained from tree rings from an old-growth fir–
hemlock (Abies-Tsuga) forest found at UTCBF. Abrams 
et al. (2017) described detailed spatial and temporal 
regeneration patterns in the dominant conifers in this 
forest stand. They concluded that the coniferous species 
were less shade tolerant than the codominant evergreen 
broad-leaved species and that conifer regeneration was 
dependent on human-caused, rather than wind-caused, 
disturbances (i.e. forest management). In contrast, 
evergreen broad-leaved species in this stand were 
more shade tolerant, and their seedlings could survive 
under the canopy of coniferous trees (Honda, 1927; 
Kaji, 1975; Abrams et al., 2017). However, temporal 
regeneration patterns and the relationships between 
regeneration and natural or anthropogenic disturbance 
are not clear for evergreen broad-leaved species.

Material and methods

Wind-damage probability model

We developed two models to predict the probability 
of wind damage based on a hierarchical Bayesian 
method. The first included wind speed, wind direction, 
season, and mean stand volume as potential factors 
influencing wind-damage probability (model 1), and 
the second included wind speed, wind direction, 
season, and decade (model 2). Due to imperfect 
record collection, the values for decade-specific mean 
stand volume across entire UTCBF in model 1 were 

estimated, as were the effects of mean stand volume 
and other factors. 

Model 2 did not address explicit factors representing 
the developmental or structural status of forest stands, 
but included a temporally autocorrelated factor (decade) 
that could indicate temporal trends in wind-damage 
probability. Details of the two models are given below.

The main assumptions (the probability distribution 
of damage events and the relationships between wind-
damage probability and influencing factors) for model 
1 are as follows:

Di ~ Bern (pi)                           (1)
	
logit(pi) = b0 + b1vei + b2vo(dei) + e1(dii) + e2(si),  (2)

where Di is a binary variable taking a value of 1 if wind 
damage occurred in the target stands during the ith 
wind event and 0 otherwise, and is assumed to follow 
a Bernoulli distribution Bern(pi); pi is the probability 
that the ith wind event will cause damage in the target 
stands; conditions during a wind event are described by 
wind speed (vei; continuous variable expressed in m s-1), 
mean stand volume (voi; continuous variable expressed 
in m3 ha-1) for a decade (dei; discrete variable), wind 
direction (dii; discrete variable), and season (si; discrete 
variable); e1–e2 are functions describing the effects 
of wind direction and season, respectively, whose 
values are autocorrelated with their neighboring values 
(explained below in detail); b0 is an intercept term; b1 
and b2 are the model parameters relating wind speed 

Figure 1. Location of the University of Tokyo Chiba Forest (UTCBF) and study plots. Points in 
the lower right diagram represent plots. The interval of contours was 10 m.
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and mean stand volume to wind-damage probability, 
respectively; and logit is a logit function. Wind direction 
was included in the model because wind direction can 
modify the impact of winds depending on topographic 
and geographic conditions or the degree of acclimation 
of trees to wind (Ennos 1997; Nilsson et al., 2004). 
Season was included because it modifies the impact of 
wind through changes in soil conditions and pheno
logy, i.e. the presence or absence of deciduous leaves 
(Nilsson et al., 2004; Usbeck et al., 2010; Brázdil et al., 
2018). Mean stand volume was included because the 
impacts of winds can vary with developmental status 
(Peterson, 2000; Albrecht et al., 2012). 

We assumed that the values of e1 and/or e2 would 
be autocorrelated with those of neighboring levels (e.g. 
e1(NE) would be correlated with e1(NNE) and e1(ENE)), 
and we therefore used the intrinsic Gaussian conditional 
autoregressive model (intrinsic CAR model; Besag et 
al., 1991) to describe these effects. The arrangements 
of levels for these variables were one-dimensional 
and circular; each level had two neighboring levels. 
Thus, the conditional probability distribution of the 
autocorrelated effect is expressed as:

where eil is ei (i = 1 or 2) for the lth level; δl is a set 
comprising neighboring levels; and σei

2 is the con
ditional variance. eil follows a normal distribution N, 
with the expected value being the average of the values 
for the neighboring levels. Note that interdependency 
among eil is circular for wind direction and season; the 
first level is a neighbor of the last level and vice versa. 
Because ei (i = 1 or 2) is non-identifiable, we added a 
constraint that ∑l eil = 0. Intrinsic CAR models have 
often been used to represent spatially autocorrelated 
random effects, but their application to temporal or 
directional data has been rare in forestry and ecology 
(e.g. Shaddick & Wakefield, 2002, Mizusaki et al., 
2015). A feature of the intrinsic CAR model is that data 
are not needed for all levels (e.g. months) to estimate 
the expected values for each level. However, complete 
datasets do improve model accuracy. 

Records for mean stand volume from UTCBF were 
imperfect and inaccurate (records were available for 
seven of nine decades); therefore, values for decade-
specific mean stand volume (vo(dei)) were estimated 
assuming that

voobs(dej) ~ N(vo(dej), σvo
2),                (4)

where voobs is the observed mean stand volume for a 
decade dej for which the record of mean stand volume 

was available, and σvo
2 is a variance term expressing 

the degree of accuracy of the records. We also assumed 
that vo(dei) followed a one-dimensional random walk 
model:

vo(dei) ~ N(vo(dei-1), σvo,de
2),

where σvo,de
2 is a variance term expressing autocor

relation strength between mean stand volumes. The like
lihood function of model 1 consisted of Equations 1 and 
4, and σvo,de

2 were estimated simultaneously with other 
model parameters.

In model 2, wind-damage probability is a function of 
wind speed, wind direction, season, and decade:

logit(pi) = b1vei + e1(dii) + e2(si) + e3(dei),       (5)

where e3 is a function describing the effect of decades 
and following a one-dimensional random walk model:

e3(dei) ~ N(e3(dei-1), σe3
2)

where σe3
2 is a variance term expressing the auto

correlation strength. e3 acts as an intercept term in 
equation 5.

Model application

To provide an example of applying the models 
described above, we reanalyzed longitudinal wind-
damage data (Abrams et al., 2017) recorded at 
UTCBF (Fig. 1). UTCBF, which was established 
in 1894, was the first university forest established 
in Japan (Research Section of Tokyo University 
Forests and Tokyo University Forest in Chiba, 1974). 
UTCBF comprises 2,226 ha of various forest types 
in the warm-temperate zone. Forest types included 
plantations of Cryptomeria japonica (L.f.) D.Don 
and Chamaecyparis obtusa (Siebold et Zucc.) Endl. 
and natural forests dominated by Abies firma Siebold 
et Zucc., Tsuga sieboldii Carrière, and evergreen 
broad-leaved trees. The topography is characterized 
as steeply dissected, with a dominant ridge/valley 
direction of north–south and steep slopes (>30 
degrees) with primarily east and west aspects (Fig. S1 
[suppl.]). 

Tree damage caused by extreme weather events, 
primarily strong wind events such as typhoons but also 
snow and ice storms, were recorded and compiled by 
Negisi (1997). That report covered a long time period 
(1900 to 1985), but lacked detailed information 
such as damage locations, consistent descriptions of 
damaged forests (e.g. stand age, structure, or species), 
and quantitative damage measures. Only imperfect 

(3)
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historical data describing developmental status (i.e. 
mean stand volume) are available for UTCBF. 

We used existing wind data for extreme weather 
events and disasters (Choshi Local Meteorological 
Observatory, 1969, 1987) recorded at Katsuura, the 
nearest weather station to UTCBF (Fig. 1). The daily 
maximum wind speed and direction for days with 
relatively strong wind (maximum wind speed >10 m 
s-1) were used as explanatory variables in the model. 
Although meteorological data recorded at Katsuura 
from 1961 onward are available online (http://www.
data.jma.go.jp/gmd/risk/obsdl/index.php),  wind 
data collected prior to 1961 are only available as 
hard copy records. For the post-1961 dataset, the 
frequency distribution of the strongest winds within 
each month had a distinct peak at SSW; 90% of the 
monthly maximum winds blew from S–WSW (Fig. 
S2 [suppl.]). Additional, long-term meteorological 
data recorded at four meteorological stations (Choshi, 
Osaka, Miyakejima, and Kobe, which are long-term 
stations; Fig. S3a [suppl.]) on Honshu (the biggest 
island in Japanese archipelago) and a small island near 
Honshu, and those recorded at meteorological stations 
near UTCBF were summarized to understand temporal 
changes in wind conditions (specifically, the number of 
days with a maximum wind seed >10 m s-1). At all long-
term stations excluding Osaka, where wind speeds are 
generally low, presumably due to its inland location, the 
number of days with strong wind increased from 1900 
to the period of 1945–1960 and then decreased from 
this period to 1980, with some fluctuations (Fig. S3b 
[suppl.]). For time periods later than 1961, data from 
meteorological stations in the proximity of UTCBF 
were included (Katsuura and Chiba; Fig. S3b [suppl.]). 
The observed change in wind conditions among distant 
meteorological stations, at maximum >500 km apart, 
suggests that this pattern was unlikely the result of local 
conditions around stations (e.g. forest development).

We categorized wind direction (dii) into 16 levels (N, 
NNE, NE, ENE,… NNW), season (si) into 12 levels 
(closely corresponding to months), and decade (dei) 
into 9 levels (1900–1909, 1910–1919, …, and 1980–
1989). We assumed non-informative prior distributions 
for almost all model parameters. Sampling from the 
posterior distribution of all parameters was performed 
using Markov chain Monte Carlo (MCMC) simulations 
with Stan software (Carpenter et al., 2017) called from 
R (R Core Team, 2019) using the library RStan (Stan 
Development Team, 2018). We followed Joseph (2016) 
in implementing the intrinsic CAR model in our Stan 
code. Stan codes for the wind-damage models are 
provided in the supplemental material (Appendices A1 
and A2). Four independent MCMC chains were run, 
and 200,000 samples were recorded after a burn-in of 

2,000 for model 1; 40,000 samples sufficed for model 
2. The chains were thinned every 50 runs, yielding 
independent samples from a posterior of 16,000 for 
model 1. Ȓ values were used to assess convergence; 
Ȓ values <1.1 indicated that the four chains had 
converged. For each model parameter, a mean value 
was calculated from the sampled values and used as the 
point estimate of the parameter. 

To assess whether the resultant models reproduced 
the major temporal pattern of wind damage, we cal
culated the wind-damage probability using records of 
extreme weather obtained from Katsuura. We summed 
the probability from four intervals with a fixed length 
(20 years) to obtain the expected number of days with 
wind-damage events in UTCBF for those intervals.

Dendrochronological sampling

To demonstrate the utility of our wind-damage 
probability model in understanding forest history, tree 
regeneration information based on tree-ring data obtained 
from an old-growth fir–hemlock forest in UTCBF was 
used to compare predicted temporal patterns of wind-
damage probability and observed tree regeneration. 
We compared the observed tree regeneration with 
the predicted wind-damage probability, rather than 
directly with the wind-damage record, because the 
damage records (Negisi, 1997) were likely imperfect, 
as they may have been biased toward plantations and 
included wartime periods. A brief history of the target 
fir–hemlock forest is as follows (Abrams et al., 2017): 
Prior to the 1920s, the target forest had a long history 
of management using the coppice-with-standards me
thod (Honda, 1912, 1927; Research Section of Tokyo 
University Forests and Tokyo University Forest in 
Chiba, 1974). Under this method, shade-tolerant 
evergreen broad-leaved trees under the canopy layer 
were frequently cut (once every 20–30 years; Honda, 
1927), creating opportunities for less shade-tolerant 
conifers to regenerate. Some regenerated conifers 
(standards) were reserved for timber production and to 
form a sparse canopy layer. Thus, several old conifers 
have been retained to the present day. The last clear-
cut of broad-leaved trees was conducted in 1919. A 
detailed description of this forest is given in Abrams et 
al. (2017).

In July and September 2013, twenty point locations 
(35°10’51–55”N, 140°9’11–38”E), located at appro
ximately 35-m intervals on a ridge in the forest interior, 
were used for dendrochronological sampling (Fig. 
1). Across all twenty locations, we obtained 64 cores 
from five major species (Abies firma, Castanopsis 
sieboldii (Makino) Hatus. ex T.Yamaz. et Mashiba 
subsp. sieboldii, Cinnamomum yabunikkei H.Ohba, 

http://www.data.jma.go.jp/gmd/risk/obsdl/index.php
http://www.data.jma.go.jp/gmd/risk/obsdl/index.php
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Quercus acuta Thunb., and Tsuga sieboldii) over a 
range of diameter classes. Two of the dominant conifer 
species (Abies firma and Tsuga sieboldii) are less shade 
tolerant, whereas three sub-dominant evergreen broad-
leaved species (Castanopsis sieboldii, Cinnamomum 
yabunikkei, and Quercus acuta) are shade tolerant 
(Abrams et al., 2017). Trees were cored (one core per 
tree) at 1.37 m from the ground for age determination. 
The regeneration year of an individual tree was defined 
as the year wherein the individual reached 1.37 m in 
height. We compared the temporal distribution of re
generation in the major tree species at the study site and 
the expected number of wind-damage events to assess 
whether regeneration had occurred following major 
wind disturbance events (e.g. typhoons).

Results

Wind-damage probability model

All Ȓ values for the parameters included in models 
1 and 2 were <1.1, indicating that all four MCMC 
chains converged in each model fitting. The posterior 
means and 95% Bayesian credible intervals for model 
parameters are provided Tables S1 and S2 [suppl.]. 
The results of model 1 are highlighted below because 
the widely applicable information criterion (WAIC; 
Watanabe, 2010) was nearly identical (105.2) for both 
models, and past mean stand volumes were estimated 
in model 1.

The predicted wind-damage probability for UTCBF 
was mainly determined by wind speed, wind direction, 
and mean stand volume. The probability increased with 
increasing wind speed (Fig. 2a), reaching a maximum 
at N–ENE directions and a minimum at SW (Fig. 2b). 
Wind-damage probability generally increased with 
increasing mean stand volume (Fig. 2c; 95% Bayesian 
credible intervals for b2 included 0). Season did not 
have a perceptible effect on wind-damage probability 
(Fig. 2d). The estimated mean stand volume generally 
increased throughout the study period, 1901–1990 (Fig. 
3). The increasing pattern observed in the estimated 
mean stand volume was similar to that of the temporally 
autocorrelated effect of decade in model 2 (e3(dei); Fig. 
S4c [suppl.]). The Bayesian credible interval for wind-
damage probability was wider for model 1 than model 
2 (Fig. 2 and Fig. S4 [suppl.]).

Temporal trends in observed wind-damage events 
and predicted wind-damage probability

Temporal trends in the expected number of days 
with wind damage corresponded well with the number 

of days with recorded wind damage at UTCBF (Fig. 
4). Strong winds that would likely cause wind damage 
were most frequent (12.4 days in a 20-year period) 
from 1946 to 1965, and least frequent (3.1–3.3 days in 
a 20-year period) before 1945. Extremely strong winds 
that were highly likely to cause wind damage (0.75 < 
p < 1.00) occurred between 1926 and 1965, but did not 
occur in the preceding period. Very similar results were 
obtained with model 2 (Fig. S5 [suppl.]).

Tree regeneration in a fir–hemlock forest at 
UTCBF

Remarkable differences were found in the temporal 
patterns of regeneration between the two dominant 
coniferous species (Abies firma and Tsuga sieboldii) 
and the two subdominant broad-leaved species (Cin
namomum yabunikkei and Quercus acuta; Fig. 5). 
Tree regeneration peaked during 1886–1905 for the 
two dominant coniferous species. The regeneration of 
Abies firma had a second, lower peak during 1946–
1965. The long-term temporal regeneration pattern 
and the expected number of wind-damage events 
differed considerably for the dominant conifers. Tree 
regeneration peaked during 1946–1965 for the two 
subdominant broad-leaved species (Cinnamomum 
yabunikkei and Quercus acuta). The regeneration 
for these species peaked during the periods where 
the expected number of wind-damage events was 
highest (Figs. 4 and 5). Another broad-leaved species 
(Castanopsis sieboldii) had two regeneration peaks, 
during 1926–1945 and 1966–1985.

Discussion

Wind-damage model

The statistical model presented in this study 
reproduced the temporal patterns of past wind damage 
and mean stand volume in UTCBF (Fig. 3), and cla
rified relevant factors determining the probability of 
wind-damage.

We introduced temporally or directionally auto
correlated terms (e1, e2, and vo in eqn. 2 for model 1; 
e1–e3 in eqn. 5 for model 2). For these terms, possible 
problems caused by autocorrelation (e.g. inflated sample 
size and underestimated variance), which exist in most 
field data, were avoided using our statistical approach. 
Even where longitudinal data of potential influencing 
factors (e.g. mean stand volume in model 1) are 
incomplete, the missing information can be estimated by 
assuming that the factors are temporally autocorrelated 
(Fig. 2c). Moreover, temporally autocorrelated random 



A Bayesian model relating wind-damage probability to biotic and abiotic factors

Forest Systems December 2019 • Volume 28 • Issue 3 • e019

7

Figure 2. Predicted wind-damage probability for UTCBF related to (a) wind speed, (b) wind directions, 
(c) mean stand volume, and (d) seasons. Solid lines indicate posterior means, and dark and light grey 
colors indicate 80% and 95% credible intervals, respectively. Predictions were made by model 1.

effects (e.g. e3(dei) in model 2) may account for a 
temporal pattern associated with change in unobserved 
factors (Fig. S4c [suppl.]). However, caution must be 
exercised in estimating unobserved variables when data 
are lacking. Appropriate assumptions are necessary 
for valid estimation, and estimating a large number 
of values often leads to wide credible intervals. Our 
proposed model framework has another advantage in its 
expandability; if additional data for factors influencing 
wind-damage probability are available, these models 
can be easily expanded by adding terms to represent 
these factors.

One of the shortcomings of statistical approaches 
to wind-damage modeling is the low applicability 
of the resultant model to situations that differ from 
those where the model was developed. Wind-damage 
probability models developed with longitudinal data in 

one area may not be useful for other areas. However, 
these models are expected to accurately predict the 
probability of future wind damage within the study 
area if the longitudinal data contain relevant patterns 
of wind events and these patterns do not change in the 
future. Therefore, models such as those presented here 
can be used in local forest management by providing 
future probabilities of wind damage. Further, they can 
provide vital information for assessing forest histories.

Wind-damage probability in UTCBF

As expected, the probability of wind damage in 
UTCBF increased with increasing wind speed (Fig. 2). 
Similar patterns have been observed in many previous 
studies (Peterson, 2000; Ulanova 2000; Usbeck et al., 
2000; Donis et al., 2018). This is logical, as the stress 

(c) (d)

(a) (b)
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(force/unit area) imposed on the canopy by wind is 
considered a function of wind speed (Gardiner et al., 
2000). 

Interestingly, we found that the probability of 
damage was higher with N–E than with S–W winds. 
This pattern may be attributable to the combination of 
topography, wind direction, and acclimation of trees to 
wind (Ennos, 1997; Nilsson et al., 2004). At UTCBF, 
ridges and valleys tend to run north–south (Fig. S1 
[suppl.]). This may increase wind speed in valleys 
when winds blow parallel to the valley orientation 
(Ruel et al., 1998). Furthermore, the majority of strong 
winds blow from the south in this region (Fig. S2 
[suppl.]). Therefore, trees are likely to have acclimated 
to southern winds, and may be vulnerable to wind from 
other directions, especially from the north, as wind 
speed may increase when winds blow parallel to the 
dominant valley direction (i.e. from the north).

Season did not have perceptible effect on wind-
damage probability, although seasons can alter the 
wind-damage probability for deciduous species, as the 
force received by the tree from wind is dependent on 
their leaf phenology (green or fallen; Nilsson et al., 

Figure 3. Temporal change in the observed and estimated 
mean stand volume for UTCBF. Points indicate the 
observed mean stand volume. Solid lines indicate posterior 
means of the estimated mean stand volume, and dark and 
light grey colors indicate 80% and 95% credible intervals, 
respectively.

Figure 4. Temporal change in the observed (a) and expected (b) number of days 
with wind-damage events in forests in UTCBF. Different shades of grey indicate 
the contribution of wind events with different levels of wind-damage probability. 
Expected number of days with wind-damage events was calculated with model 1.

(a)

(b)
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Figure 5. Frequency distribution of the regeneration year of five major tree species in a fir-hemlock forest 
in UTCBF.

2004). However, forests in UTCBF are dominated by 
evergreen species, which likely explains why season 
was not an important factor for this study area.

Although the records of mean stand volume were 
incomplete and potentially inaccurate, model 1 es
timated the temporal change in mean stand volume and 
detected a positive effect of mean stand volume on wind-
damage probability (Fig. 2c and Fig. 3). Broadly, the 
forests at UTCBF may have become more vulnerable 
to wind damage as trees grew taller and were therefore 
more exposed (Albrecht et al., 2012; Donis et al., 2018). 
Although no information on forest development stage 
was used in model 2, the temporally autocorrelated 
random effect (e3) detected a temporal pattern similar 

to that of mean stand volume (Figs. 3 and S4c). This 
indicates that the average developmental status across 
UTCBF may be the major driving factor in the observed 
temporal pattern of wind-damage probability, which was 
not explained by wind speed or direction. We therefore 
suggest that the terms representing dynamic forest 
developmental status be included in future models that 
aim to analyze longitudinal data.

Regeneration patterns in a fir–hemlock forest at 
UTCBF

If tree regeneration and mortality rates are cons
tant in a population, the frequency distribution of 
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regeneration year (a mirror image of age structure) 
should become an exponential function. However, 
temporal variability in regeneration or mortality can 
change this distribution from the exponential function. 
For example, if regeneration peaks in a given period, 
age structure shows a corresponding peak. Among the 
frequency distributions of tree regeneration year for 
major species in the target fir–hemlock forest, none was 
similar to an exponential function (Fig. 4), indicating 
that regeneration and/or mortality were not constant.

A remarkable temporal pattern was observed in the 
frequency distributions of tree regeneration year for the 
two dominant conifers (Abies firma and Tsuga sieboldii), 
which peaked during 1896–1905 (Fig. 4). This pattern 
differed not only from the exponential function 
but also from the temporal pattern of the expected 
number of wind-damage events (Fig. 3). As described 
in Abrams et al. (2017), this regeneration pattern 
was likely created by historical human management 
and not by wind disturbances. The majority of fir–
hemlock forests at UTCBF had been managed using a 
coppice-with-standards method until the 1920s. In this 
method, conifers in the canopy layer (standards) were 
reserved for timber production, mostly for large-scale 
construction, while evergreen broad-leaved trees under 
the canopy layer were used for fuel wood and charcoal 
as short-rotation sprout coppice (cut once every 20–30 
years; Honda, 1927). This relatively frequent cutting 
of understory broad-leaved trees gave less shade-
tolerant conifers the opportunity to regenerate, and 
once regenerated, conifers can be long lived as reserved 
standards. The regeneration year of existing conifers in 
the target fir–hemlock forest was dated as far back as 
1810 and peaked during 1886–1905 (Fig. 4; Table S1 
[suppl.]).

We note that natural disturbances are also important 
for regeneration of conifers in this forest, aside from 
human management history. For example, it is possible 
that the observed lower peak in the regeneration of 
Abies firma from 1946 to 1965 was caused by wind 
disturbance, which also peaked in the same period. 
When these trees regenerated, more than 20 years had 
passed since the last clear cut was conducted for broad-
leaved trees in 1919. In the absence of canopy gaps, 
low light levels in the forest understory likely limited 
the regeneration of Abies firma. Kabaya (1975) reported 
saplings of Abies firma growing in natural gaps in a 
nearby fir–hemlock forest at UTCBF.

The frequency distributions of tree regeneration 
year for the two broad-leaf tree species (Cinnamo
mum yabunikkei and Quercus acuta) were consistent 
with the above-described management history, and 
also supported our hypothesis that regeneration was 
stimulated by wind-related disturbances. In this forest, 

understory broad-leaves were cut once every 20–30 
years until the 1920s. Considering the time required for 
seedlings to reach a height of 1.37 m from germina
tion, the oldest regeneration year for broad-leaf trees 
observed in this forest (1923) corresponded well with 
the last recorded clear cut. The regeneration year of 
these species peaked from 1946 to 1965, consistent 
with a peak in the expected number of wind-damage 
events during this period (Figs. 4 and 5). After the end 
of coppice-with-standards management around 1920, 
regeneration of shade-tolerant broad-leaved species 
was likely dependent on canopy gaps formed by strong 
wind events. However, the temporal regeneration 
pattern of Castanopsis sieboldii could not be explained 
by management history or wind disturbance. Given that 
it is a shade-tolerant species, its regeneration may be 
less dependent on disturbance factors.

We developed a flexible model framework for the 
analysis of longitudinal wind-damage records for 
forests that adequately addresses autocorrelation. In an 
application example, we demonstrated the usefulness 
of our model for understanding forest regeneration 
history. The model presented in this study can be 
readily expanded to include other factors representing 
additional forest, wind, and environmental conditions. 
The models discussed here represent a simple framework 
for better understanding past forest dynamics and for 
making appropriate forest management plans to predict 
and mitigate wind damage.
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