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Abstract 
Aim of the study: To analyze the recovery pattern of carbon pools in terms of size and the relative contribution of each pool to 

total ecosystem C along a fire chronosequence of tropical mixed pine-hardwood forest. 
Area of study: Las Joyas Research Station (LJRS), core zone of Sierra de Manantlán Biosphere Reserve (SMBR) in the state of 

Jalisco, central western Mexico. 
Materials and methods: Carbon stored in aboveground plant biomass, standing dead trees, downed woody debris, forest floor, 

fine roots and mineral soil, was compared with a nested analysis of variance (ANOVA) in post-fire stands of eight-year-old, 28- and 
60-year-old stands of mixed Pinus douglasiana-hardwood forest. 

Main results: The total ecosystem carbon in eight-year-old stands was 50% lower than that of 60-year-old stands. Carbon content in the 
biomass and mineral soil increased with stand age. The carbon in the biomass recovered to the undisturbed forest in the 28 years of suc­
cession. The main C storage in the eight-year-old stands were the mineral soil (64%) and downed woody debris (18%), while in the 28- and 
60-year-old stands, live tree biomass and mineral soil were the two largest components of the total C pool (43% and 46%, respectively). 

Research highlights: We found a significant effect of high-severity fire events on ecosystem C storage and a shift in carbon 
distribution. The relatively fast recovery of C in ecosystem biomass suggests that mixed Pinus douglasiana hardwood forest possess 
functional traits that confer resilience to severe fire events. 

Key words: chronosequence; carbon dynamics; mineral soil; Pinus douglasiana; fire effects. 
Abbreviations used: LJRS, Las Joyas Research Station; DBH, diameter at breast height; DL, duff layer; LL, litter layer; DWD, 

downed woody debris; ANOVA, analysis of variance; CO2, carbon dioxide; SMBR, Sierra de Manantlán Biosphere Reserve; C, 
carbon. AGV, above ground vegetation. 
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Introduction 
Wildfires influence the earth´s climate via the release 

of carbon and greenhouse gases, atmospheric aerosols, 
and by the alteration of surface albedo (Bowman et al., 

2013). Therefore, has been a common perception that 
fire suppression decrease the rate of release of CO2 

caused by burning and maximize C storage in ecosys­
tem pools (Tilman et al., 2000; Hurteau & Brooks, 
2011). However, there is enough evidence about how 
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a changing climate and policies that encourage fire 
suppression has contributed to modify forest structure, 
fuel loads, and fire behavior, causing a shift from low­
to high-severity fires (Agee & Skiner, 2005; Schoen­
nagel et al., 2017). In this sense, managers of fire-prone 
forests must trade off the promotion of C storage 
against the reduction of fire hazard (Hurteau et al., 
2008; Bowman et al., 2013). 

Understanding the role of fire regimes on ecosys­
tem carbon dynamics is critical for the implementation 
of climate change mitigation strategies in forested 
landscapes (Hurteau & Brooks, 2011; Williams et al., 
2012; Bowman et al., 2013). The effects of wildfires 
are strongly influenced by variability in vegetation 
types, site conditions, fire behavior, and the diversity 
of fire regimes at the landscape level, which are char­
acterized by the range of variation in frequency, sea­
sonality, intensity, severity, size, and spatial pattern 
of the fire events (Agee, 1993; Scott et al., 2014). For 
this reason, there is a need to study fire effects in 
different forest ecosystems and environmental condi­
tions, particularly in mountain forest ecosystems in 
tropical regions of the world (Pregitzer & Euskirchen, 
2004), where the effects of wildfires on the forest C 
balance and post-fire response of C pools have been 
little studied (Pompa-García & Sigala-Rodríguez, 
2017). This is crucial in the context of increasing 
wildfire activity and severity as a consequence of fire 
suppression policies and human-induced climate 
change that has been reported for other regions like 
the western United States (Westerling et al., 2006; 
Schoennagel et al., 2017). 

Worldwide, the majority of pine forests are under a 
frequent low-severity fire regime (which means a tem­
poral frequency lower than 35 years). Under this wild­
fire regime, the majority of fires have low severity, and 
wildfire events with moderate or high severity occur 
in a smaller proportion (Agee, 1993). The low-severi­
ty fires reduce the tree basal area by less than 30% 
(Boerner, 1981; Keyser et al., 2008), mainly affecting 
the C storage in shrubs, herbs, and the forest floor layer 
(Boerner, 1981), while high-severity fires induce high 
tree mortality (> 70%) and elevated carbon emissions, 
alter the distribution of carbon pools on forest ecosys­
tems, and may have long-term effects on post-fire for­
est structure and function (Kashian et al., 2006; Alex­
ander et al., 2012; Mitchell, 2015). 

Carbon recovery patterns have been widely docu­
mented from boreal and temperate forests, which are 
dominated by stand-replacing fire regime (mean return 
interval 50 to >250 years) (Wang et al., 2001; Litton 
et al., 2004; Gough et al., 2007; Dore et al., 2008; 
Alexander et al., 2012; Kashian et al., 2013). Using 
data from chronosequences, C recovery in aboveground 

biomass has been described as a relatively slow C ac­
cumulation during stand regeneration, followed by a 
fast accumulation during stand development, then 
reaching a maximum and remaining relatively constant 
or declining in old-growth forest stands (Bormann & 
Likens, 1979). Site productivity, stand density and 
composition play a key role as a source of variation in 
forest C storage after fires (Litton et al., 2004; Kashi­
an et al., 2006; Alexander et al., 2012; Spies et al., 
1988). C stored in belowground components varies less 
than that in aboveground pools (Kashian et al., 2006; 
Gough et al., 2007). However, a significant increase in 
post-fire mineral soil C has been observed, associated 
with rapid root turnover and potential incorporation of 
fire-created debris into the mineral soil C pool over 
time (Seedre et al., 2014). 

Here we present the results of a study on the recov­
ery of carbon pools after wildfire events that opened 
up gaps, reinitiating succession in mixed pine-hard­
wood forests of central-western Mexico. Lower-mon­
tane moist pine forest in Mexico covers 6.1 million 
hectares (3.2% of the country’s area). These forests 
thrive in warm temperate humid climates (mean an­
nual temperature of 11‒19 ºC with a potential evapo­
transpiration: annual precipitation ratio less than 1), 
with a dry spring season and a summer rain regime 
(Cuevas-Guzmán & Jardel, 2004). Pinus species are 
the dominant component (>50% basal area), mixed with 
broad-leaved tree species of genera like Quercus, 
Carpinus, Clethra, Cornus, Magnolia, and Styrax, 
among others (Cuevas-Guzmán & Jardel, 2004). Mixed 
pine-hardwood stands develop in advanced succes­
sional stages in mesic sites, and the dominance of pines 
is maintained by recurrent wildfires (Jardel, 2008). The 
specific objective of the study was to analyze the re­
covery of carbon pools, in terms of size and the relative 
contribution of each pool to total ecosystem C along a 
fire chronosequence of tropical mixed pine-hardwood 
forest. Carbon content was quantified in stands of 8˗ 
and 28-year˗old that originated from fire and a > 
60-year-old that typifies mature mixed pine-hardwood 
forests in the study area. We hypothesize that after 
wildfire ecosystem C storage will increase with stand 
age. 

Material and methods 

Study Area 

The study was conducted in Las Joyas Research 
Station (LJRS), in the zone core of Sierra de Manantlán 
Biosphere Reserve (SMBR) in the state of Jalisco, 
central western Mexico (19° 14’ 49”‒19° 37’ 30” N 
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and 104° 14’ 49”‒104° 18’ 16” W). LJRS has an exten­
sion of 1245 ha in a mountainous landscape with com­
plex relief, with an elevation range of 1500 m to 2242 
m. The climate is warm temperate with a mean annual 
temperature of 15 ± 2 °C, ranging from 12.8 °C in 
January to 20 °C in May. Mean annual rainfall is 1826 
± 94 mm, and the potential evapotranspiration:annual 
rainfall ratio is 0.5‒0.6. According to the Holdridge 
Life Zone System, the bioclimatic conditions corre­
spond to a lower montane moist forest (Cuevas-
Guzmán & Jardel, 2004). 

The soil parent materials are Tertiary extrusive 
igneous rocks, like basaltic porphyries, basalts, an­
desitic basalts, and volcanic tuffs. A typical soil cat­
ena in the area is a gradient from Inceptisols in 
ridges and upper slopes, Alfisols in middle to lower 
slopes, and Ultisols in hollows and stream banks. The 
vegetation is a mosaic of pine-oak forests associated 
with convex landforms (mountaintops and upper 
slopes), mixed hardwood forests (cloud forest) in 
concave landforms (ravines and hollows), mixed pine­
hardwood forest in intermediate conditions, and sec­
ondary scrub in abandoned agriculture fields (Cuevas-
Guzmán & Jardel, 2004). The dominant species in 
pine-oak and mixed pine-hardwood forests is Pinus 
douglasiana Martínez. 

Most fires in the SMBR occur between April and 
early June, at the end of the dry season. Fires are rela­
tively small in area (mean: 189 ha, mode: 50 ha) and 
the most common ignition factors are human-related 
activities (Balcázar, 2011). Frequent low-severity sur­
face fires characterize the historical fire regime in the 
pine-oak forest, with a fire return interval ranging from 
three to12 years (Cerano-Paredes et al., 2015). 

Fire suppression in LJRS used to encourage the 
recovery of mixed hardwood forests and mixed pine­
hardwood forests cover through natural regeneration, 
has led to decreased fire frequencies and accumulation 
of fuel. Forest floor and woody debris loads for stands 

without fires in 20 years have been estimated, respec­
tively, at 37 to 58 Mg ha-1, and 31 to 38 Mg ha-1 (Al­
varado-Celestino et al., 2008). Under these conditions, 
mixed-severity fire events occurred in 1983 and 2003, 
causing larger fires; while there is no estimate of the 
burned area in 1983, the total area burned in the 2003 
fire was 390 ha. The result was a heterogeneous spatial 
pattern formed of low-, moderate-, and high-severity 
patches, and others did not burn. High-severity fire 
patches were considered those where intense surface 
fire with smoldering combustion and torching caused 
high tree mortality (> 70%), consumption of the entire 
organic soil layer, and the restarting of succession 
(Jardel, 2008). The size of patches ranged from 1 to 40 
ha and there was not post-fire management, vegetation 
recovered through natural regeneration. The sites 
burned at high-severity were selected for the present 
study (Table 1). 

Sampling design 

To analyze the recovery of ecosystem carbon pools 
along a post-fire chronosequence, we compared stands 
eight and 28 years following a fire, and mature stands 
(>60 years). The 60-year-old stands have not had low­
severity fires for at least 30 years and represent late­
successional condition in the absence of fire (Jardel, 
1991; Cuevas-Guzmán & Jardel, 2004). It was assumed 
that the mature forests are representative forests in this 
region. 

The use of the chronosequence method relies on the 
assumption that all variation among sites is due to dif­
ferences in time since the disturbance (Walker et al., 
2010). Therefore, a nested sampling design was used 
to help prove that assumption. Each stand age class 
was replicated three times. To minimize the impact of 
spatial autocorrelation, the stands were not samples in 
close proximity to one another. This was achieved by 

Table 1. Stand characteristics in a fire chronosequence of tropical mixed pine-hardwood forest. 

Stand age 
(years) 

Stand  
replicate 

Geographic coordinates Extension 
affected by 

fire (ha) 

Basal area 
(m2 ha-1)

DBH 
range 
(cm) 

Height
range
(m) LN LW 

8 1 19°36’04” 104°16’22” 2 10.9 ± 3.3 2.5˗45 2.3˗30 
2 19°36’20” 104°16’05” 1 8.5 ± 2.7 2.5˗48 1.7˗22 
3 19°35’43” 104°15’01” 1 10.5 ± 4.6 2.5˗36 2.0˗23 

28 1 19°35’07” 104°15’33” 9 43.2 ± 3.4 2.5˗61 2.5˗30 
2 19°35’00” 104°15’39” 8 39.9 ± 2.4 2.5˗64 1.5˗29 
3 19°35’20” 104°15’30” 12 50.7 ± 4.9 5.0˗63 2.8˗27 

60 1 19°35’14” 104°16’06” -­ 47.7 ± 6.5 2.5˗71 2.8˗45 
2 19°35’53” 104°17’52” -­ 47.8 ± 8.9 2.5˗66 1.0˗33 
3 19°35’19” 104°16’44” -­ 56.3 ± 7.1 2.5˗78 2.0˗44 
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4 

selecting replicate stands with distances between them 
in the range of 0.5 to 2.4 km. Within each stand we 
randomly established three 500 m2 circular plots (12.62 
m radius), giving a total of 27 plots. 

To minimize the effect of variation in site conditions, 
stands were located in the same elevational range (1950 
to 2150 m), within the same soil type (Alfisols), in the 
mid-portion of N-facing slopes dominated by Pinus 
douglasiana (> 70% basal area). Mean slope inclina­
tions showed no significant difference (from 22 to 
38%). Mean stem density did not differ among stands, 
but tree basal area in the eight-year-old stands was four 
times lower than in the 28- and 60-year-old stands 
(Table 1). 

Field sampling 

The ecosystem carbon pools sampled within each 
500-m2 circular plot were: live and standing dead trees 
(>2.5 cm of diameter at breast height, DBH), under­
story (trees < 2.5 cm of DBH, shrubs <1.3 m in height 
and herbaceous plants), forest floor layer (litter and 
duff layer), downed woody debris, fine roots and min­
eral soil. The vegetation and soil samples were taken 
in the dry season, between January and June 2011. 

DBH (cm) was measured at 1.30 m height of all live 
and standing dead trees (>2.5 cm of DBH) using stand­
ard diameter tape graduated into 0.1-cm. The total 
height (m) of all live and standing dead trees within 
the plot was measured using a Suunto clinometer. All 
live trees were identified to species level. Understory 
was clipped at the base in four 1-m2 subplots located 
13 m from the center of each plot following the direc­
tion of the main four cardinal points. Components were 
stored in paper bags, labeled, and transported 3-4 days 
after sampling to the laboratory to determine dry weigh. 

Downed woody debris (DWD), defined as all dead 
wood lying or standing (with a zenith angle 45°) was 
sampled using the planar intercept method (Van Wag­
ner, 1982). Starting from the center of each plot, three 
20-m transects were established. The direction of the 
first transect was chosen randomly; the second tran­
sect was placed 120 degrees from the first and so on. 
The criteria used for decide which DWD was inter­
sected by transect were the proposed by Brown 
(1974). According to its size, the DWD was classified 
into fine (< 0.6 cm), regular (0.6‒2.5 cm), medium 
(2.5‒7.6 cm), and coarse (>7.6 cm). DWD pieces < 
2.5 cm in diameter intersected by transect were 
counted in the last 5-m section. While, DWD pieces 
2.6‒7.5 cm were counted along the 20-m transect. 
DWD >7.6 cm were measured in diameter (cm) at the 
point of intersection and the decay was classified in 

five categories following the classification of Waddell, 
(2002). DWD pieces of all size were randomly col­
lected, stored in paper bags, labeled, and transported 
3-4 days after sampling to the laboratory to assess the 
carbon concentration (%). 

The forest floor was divided into two layers: the 
litter layer (LL) and the duff layer (DL). The LL is 
composed of fresh plant residues (excluding woody 
debris) that keep their structure and have an identifi­
able origin; the DL includes decomposed organic 
matter that has lost its original structure. The depth 
(cm) of the LL and DL was measured using a gradu­
ated needle, every 3-m starting from the center of each 
plot and along four transects (12.6 m) following the 
direction of the main four cardinal points (16 points 
per plot). LL and DL bulk density samples were col­
lected in three random points per plot following the 
method proposed by Ottmar & Andreu, (2007) modi­
fied by Morfín et al., (2012). At each sampling point, 
30-cm sharpened steel square was positioned on top 
of the LL and DL and inserted until the bottom of the 
square was embedded in mineral soil. Thirteen iron 
markers were positioned in a systematic pattern 
within the square and inserted until flush with the top 
of the litter layer. The litter was carefully removed 
from the square and placed within a labeled paper bag. 
The distance between the top of each marker and the 
top of the DL was measured and recorded. To measure 
the DL, each marker was inserted further until flush 
with the top of the duff layer. The duff layer was care­
fully removed from the square and placed within a 
labeled paper bag. The distance between the top of 
each marker and the top of the mineral soil was meas­
ured and recorded. These thirteen depth measurements 
were averaged to represent the LL and DL depth for 
the sample. LL and DL samples were transported 
every 3-4 days after sampling to the laboratory to 
determine dry weigh. A total of 81 litter and 81duff 
bulk density samples were collected. 

The fine roots (< 5 mm of diameter) were sampled 
at eight points systematically selected from the 16 
points used for forest floor depth measurements. Soil 
samples were taken from the top 40 cm of mineral soil 
with a cylindrical soil corer (5-cm diameter, 15-cm 
height), placed in plastic bags, labeled, and transported 
every 3-4 days after sampling to the laboratory to de­
termine dry weight. Fine roots in the forest floor were 
not considered in this study. 

Mineral soil samples were taken with a cylindrical 
soil corer (5-cm diameter, 15-cm height) at four depth 
intervals (0‒10, 10‒30, 30‒50, and 50‒70 cm) in eight 
points systematically selected from the 16 points used 
for forest floor depth measurements. For each soil 
depth, four of the eight samples were used to determine 



Forest Systems� April 2020 • Volume 29 • Issue 1 • e001

5 Post-fire recovery of ecosystem carbon pools

 

 
 
 
 
 
 
 
 

    

 

 
  

 

 
 
 
 

  

 
 
 

    
      

 
 

 
 

        
 

   

 

    
 
 

  

 
 
 
 

 
 
 
 
 
 
 
 

 
 

  

 

 
 
 

        
         

 
  

 
 

  
 
 
 
 
 
 

     

soil bulk density by the core method. Soil was placed 
in plastic bags, labeled, and transported every 3-4 days 
after sampling to the laboratory. 

Laboratory analyses 

The fine roots were separated from soil manually 
with tweezers and placed in a petri dish with water to 
eliminate soil particles. The live and dead roots were 
not separated. To biomass determination, the samples 
of understory, DWD, LL, DL and fine roots were oven­
dried to constant weight at 60 °C and weighed. Sub­
samples (0.5 g) were ashed in a muffle furnace at 
500 °C for 4 h to determine inorganic content to report 
the data on a dry ash-free basis. The samples were 
ground and passed through a 40-mesh sieve (0.420 mm) 
and then pooled into one composite sample per plot for 
total carbon concentration analyses. Mineral soil sam­
ples were oven-dried at 50 °C for 48 h. Bulk samples 
were weighed and the volume of coarse fragments 
(> 2 mm) were determined and used to correct bulk 
density for each plot; the eight soil subsamples were 
pooled into one composite sample for each depth per 
plot, which was then passed through a 100-mesh sieve 
(0.149 mm) for total carbon concentration analyses. 

Understory, DWD, LL, DL, fine roots, and mineral 
soil samples were analyzed for total carbon concentra­
tion (mg g-1) by combustion and coulometric detection 
using an automated CO2 analyzer (UIC model CM5012, 
Joliet, IL, USA). 

Biomass and carbon calculation 

Plant biomass was considered as the dry weight of 
living and dead plant material contained above- and 
below-ground per a unit of surface area at a given point 
in time. Above- and below- ground plant biomass are 
expressed in units of Mg ha-1. Live and dead tree bio­
mass was calculated using allometric equations pro­
posed by Vargas-Larreta et al., (2017) for Pinus dougla­
siana, Pinus herrerae, and Pinus oocarpa and 
Cruz-Martínez, (2007) for broad-leaved species. DWD 
biomass was calculated using equations proposed by 
Van Wagner, (1982). Decay classes registered in field 
were grouped in three classes: 1, 2, and 3 for sound, 4 
for intermediate, and 5 for rotten (Waddell, 2002). The 
mean diameter quadratic and specific gravity values 
used are given in Table 2. The biomass of the forest 
floor was estimated as the product of depth (cm) of the 
LL and DL layers and bulk density (Mg ha-1 cm-1). Bulk 
density values for the same plots were previously re­
ported by Quintero-Gradilla et al. (2015). 

Table 2. Parameters for estimating downed woody debris 
(DWD) biomass with equations proposed by Van Wagner, 
(1982). Source: Morfín-Rios et al. (2012) and Morfín-Rios 
JE, Universidad de Guadalajara, México, unpublished data. 

DWDsize (cm) Mean quadratic 
diameter (cm2) 

Specific gravity 
(g cm-3) 

< 0.6 0.21 0.49 
0.6‒2.5 1.64 0.46 
2.5‒7.6 18.91 0.44 
> 7.6 Sound 0.41 
> 7.6 Intermediate 0.21 
> 7.6 Rotten 0.14 

The C content in the different pools was estimated 
by multiplying the biomass (Mg ha-1) with carbon con­
centration (% of dry weight). C content in the mineral 
soil was calculated as the product of bulk density (g 
cm-3), depth (cm) and C concentration (%). All C pools 
were scaled up to Mg C ha-1, and mean stand-level 
estimates for each C pool were calculated (n = 3, plots). 
For live and standing dead trees carbon concentration 
was assumed to be 50% of biomass (IPCC, 2003). Total 
ecosystem carbon storage was estimated by summing 
the individual carbon pools within each plot. 

Statistical analyses 

All variables were tested for normality and homosce­
dasticity assumptions using the Kolmogorov‒Smirnov 
and Levene’s test, respectively. Data were log-trans­
formed to meet assumptions when required (Zar, 1999), 
although they are reported in the original scale of meas­
ure. A nested analysis of variance (ANOVA) was used 
to test the effect of stand age after a wildfire on carbon 
content pools. Stand age (eight, 28, or 60 years) was the 
main fixed effect, and stands (repetitions) within each 
age were the nested random effects. After nested 
ANOVA, the means was compared by Tukey test (p = 
0.05). Pearson’s correlation was used to analyze the cor­
relations between tree basal area and aboveground tree 
biomass and total ecosystem biomass, and the correlation 
between stand age and total ecosystem C content. All 
these analyses were done with SPSS software version 
16 (SPSS Inc. 1999, IBM, Armonk, NY, USA). 

Results 

Biomass distribution in ecosystem 
components 

Total ecosystem biomass was lower in eight-year-old 
stands (152.1 Mg ha-1) than in the 28- and the 60-year-old 
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stands (380.4 and 432.8 Mg ha-1, respectively; Table 3). 
Aboveground live tree biomass increases significantly 
with stand age (F2,6 = 33.41, p = 0.001). Both the above­
ground pine biomass species and broad-leaved species 
biomass increase with stand age. However, pine biomass 
was similar between 28- and 60-year-old stands, while 
broad-leaved biomass was highest in the 60-year-old 
stands. The biomass of standing dead tree was not af­
fected by stand age (Table 3). Understory biomass dif­
fered significantly with stand age, and peaked early in 
the chronosequence in the eight-year-old stands, which 
had 6- to 9-fold greater understory biomass than in the 
28- and 60-year-old stands, respectively (Table 3). 

Similarly, the DWD biomass in the eight-year-old 
stands was 5-fold greater than in the 28- and 60-year-old 
stands (F2,6 = 11.99, p = 0.008), and made up 56% of the 
total aboveground biomass (Table 3). A nested stand 
effect within the stand age was significant (F6,18 = 5.39, 
p = 0.002), which means that the site factor was also 
significant. 

The forest floor mass increased with stand age 
(F2,6 = 40.58 p ≤ 0.001). Both LL and DL mass were 
lower in the eight-year-old stands than in the older 
stands. LL mass peaked in the 28-year-old stands, while 
the DL mass was similar between the 28- and 60-year­
old stands. In contrast, fine root biomass was not af­
fected by stand age. 

Tree basal area was positively related with above­
ground tree biomass (R2 = 0.94, p < 0.001) and total 
ecosystem biomass (R2 = 0.92, p < 0.0001). The 

dead:live biomass ratio decreased with stand age from 
1.80 in the eight-year-old stands to 0.09 and 0.23 in the 
28-and 60-year-old stands, respectively. 

Ecosystem carbon content 

C concentration 

The C concentration in the above- and below-ground 
biomass components, litter, and DWD varied from 39% 
to 51%, and no one differed significantly among forest 
stand by age (Table 4). In the three successional ages, 
the mineral soil C concentration was higher in the first 
10 cm of the soil and decreased significantly (to 50%) 
up to 30 cm depth, and even further to 28% at 70 cm 
soil depth (Fig. 1). Differences among ages were only 
significant in the top 0‒10 cm (Fig. 1). 

C content pools 

The C content in biomass components across the age 
sequence followed a similar pattern compared to the 
biomass (Table 5, Fig. 2). The C stored in aboveground 
tree biomass increased 6-fold from the eight-year-old 
stands to the 60-year-old stands. Similarly, forest floor 
C content increased by approximately 21.6 Mg C ha-1 

from the eight-year-old stands to the 28- and 60-year­
old stands. In contrast, C stored in understory decreased 
by 85% between the eight-year-old and 60-year-old 

Table 3. Total biomass (Mg ha-1) in a fire chronosequence of tropical mixed pine-hardwood for­
est. Values are average with standard error in parentheses. Different letters indicate significant 
differences between means (p < 0.05) with the post hoc Tukey test. 

Components 
Stand age (years)

8 28 60 

Aboveground biomass (Mg ha-1) 

Live biomass 
Pine trees 50.9 (7.5)a 287.2 (23.2)b 296.9 (30.1)b 

Broad-leaved trees 2.8 (1.2)a 9.0 (2.2)a 50.7 (8.4)b 

Total live trees (pines + broad-leaved) 53.7 (6.4)a 296.2 (21)b 347.5 (33.3)c 

Tree saplings, shrubs and herbs 1.8 (0.6)a 0.2 (0.1)b 0.3 (0.1)b 

Dead biomass 
Standing dead trees 3.6 (2.3) a 4.1 (1.8) a 7.5 (2.6) a 

Litter layer (LL) 4.2 (0.6)a 18.3 (4.7)b 12.3 (0.5)c 

Duff layer (DL) 6.2 (2.2)a 40.5 (2)b 42.5 (5)b 

Total  forest floor (LL + DL) 10.4 (1.8)a 58.8 (5.5)b 54.8 (4.4)b 

Downed Woody Debris (DWD) 79.5 (16)a 17.2 (7)b 18.4 (3)b 

Total aboveground biomass 149 (3.5)a 376.5 (36.6)b 428.3 (31.4)b 

Belowground biomass 

Fine roots (< 5 mm) 3.1 (0.2) a 3.9 (0.3) a 4.5 (0.3) a 

Total ecosystem biomass 152.1 (5.4)a  380.4(36.5)b 432.8 (31)b 
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 Table 4. Carbon concentration (%) of ecosystem biomass components in a fire chronosequence 
of tropical mixed pine-hardwood forest. No significant differences were found (p < 0.05) with 
the ANOVA test for the same component between ages. Values are the average for the three ages 
(eight, 28, and 60 year) with the standard error in parentheses. 

Ecosystem biomass components 
Stand age (years)

8 28 60 

Saplings 45.7 (0.5) 44.0 (0.8) 45.0 (0.4) 
Shrubs 44.3 (0.5) 43.8 (0.9) 43.6 (0.6) 
Herbs 42.7 (0.4) 40.8 (0.9) 39.2 (0.2) 
Fine roots 41.8 (0.5) 43.2 (0.4) 43.5 (0.5) 
Litter layer 47.2 (0.6) 47.9 (0.2) 47.2 (0.2) 
Duff layer 44.4 (0.9) 45.9 (0.5) 45.4 (0.7) 
Sound downed woody debris 47.5 (0.6) 46.1 (1.0) 48.5 (0.6) 
Intermediate downed woody debris 48.9 (1.1) 49.8 (0.3) 50.4 (0.4) 
Rotten downed woody debris 50.8 (1.0) 48.8 (1.2) 51.0 (0.9) 

stands; likewise, C in DWD pool decreased with stand 
age, following an inverse J-shaped trajectory from 
38 Mg C ha-1 in the eight-year-old stands to 9 Mg C ha-1 

in the 60-year-old stands. The C content in fine root 
mass averaged 1.4 Mg C ha-1 and did not differ sig­
nificantly among stand ages. 

The soil bulk density showed no differences among 
stand ages at the same depth interval. The mean soil 
bulk density for each depth was 0.69±0.03, 0.73±0.02, 
0.85±0.02, and 0.88±0.02 g cm-3 for 0‒10, 10‒30, 
30‒50, and 50‒70 cm soil depth, respectively. Total 
mineral soil C (0-70 cm depth) increased significantly 
with stand age (Table 5, Fig. 2), from 147 Mg ha-1 in 
the eight-year-old stands to 161 and 203 Mg ha-1 in the 
28- and 60-year-old stands, respectively (Fig. 3). 

Total ecosystem C content increased with the stand 
age from 221 to 423 Mg C ha-1 (F2,6 = 60.96, p < 0.000, 
Table 5 and Fig. 4a). The correlation between stand 
age and total ecosystem C content was significant 
(R2 = 0.84 p < 0.001). Eight years after a fire, C was 
mainly stored in the mineral soil (67%) and the dead 

Figure 1. Distribution of carbon concentration (mg g-1) in the 
mineral soil (at 10, 30, 50 and 70 cm depth) in a fire chronose­
quence of tropical mixed pine-hardwood forest. Each data point 
represents the average of C concentration by soil depth, horizon­
tal bars are standard error, and lines are used to graphically visu­
alize the trend in average C concentration with soil depth. Dif­
ferent letters indicate a significant difference at the same depth 
between ages (p < 0.05) with the post hoc Tukey test. The lack of 
letters indicates no significant differences. 

Table 5. Nested analysis of variance (F and p) for carbon content (Mg ha-1) in a fire chronose­
quence of tropical mixed pine-hardwood forest. Stand age is the fixed effects factor; stand is the 
nested effect within stand age as a random effect factor. 

 
 
 
 
 
 
 

Pools 

Variation source 

Stand age Stand nested within
stand age 

F2,6 p F6,18 p 

Live trees 33.400 0.001 1.780 0.058 
Understory (saplings, shrubs and herbs) 6.100 0.035 1.380 0.273 
Forest floor (litter + duff layer) 34.900 0.000 1.230 0.334 
Dead wood (standing dead trees + DWD) 11.570 0.009 6.660 0.001 
Fine roots 2.040 0.210 1.960 0.125 
Mineral soil 15.960 0.004 0.554 0.760 
Total ecosystem carbon pool 60.963 0.000 2.09 0.105 

http:0.88�0.02
http:0.85�0.02
http:0.73�0.02
http:0.69�0.03
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woody debris (18%), both making up 85% of the total 
ecosystem C content, while the live trees pool con­
tributed 12% of the total ecosystem C content. In 
contrast, live trees and mineral soil were the two larg­
est pools of the total ecosystem C pool in the 28-year­
old (90%) and 60-year-old (89%) stands, C stored in 
dead wood accounted only for 3% of the total ecosys­
tem C pool, in both 28-year-old and 60-year-oldstands 
and the forest floor represented 8% and 6%, respec­
tively (Fig. 4b). 

Discussion 

The changes observed in aboveground plant biomass 
after stand-replacement fires reveal a fast recovery of 
C pools in the mixed pine-hardwood forests in LJRS. 
A significant reduction of total C ecosystem pools by 
plant mortality and forest floor layer consumption is 
a widely documented effect of high-severity fires in 
boreal and temperate forests (Litton et al., 2004; Mac-
Kenzie et al., 2004; Kashian et al., 2006; Alexander 

Figure 2. Carbon storage in ecosystem pools (Mg C ha-1) in a fire chronosequence of tropical mixed 
pine-hardwood forest. Values are average with the standard error. Bars with different letters show sig­
nificant differences between means (p < 0.05) with the post hoc Tukey test. 
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et al., 2012; Seedre et al., 2014). In the study area, 
eight years after a fire the total ecosystem C stored 
was 48% of the C content in 60-year-old stands. Al­
though the chronosequence is relatively short com­
pared with other studies reported for temperate and 
boreal forests (Wang et al., 2003; Litton et al., 2004; 
Kashian et al., 2006; Dore et al., 2008; Alexander 
et al., 2012; Carlson et al., 2012; Kashian et al., 2013), 
it suggests that the warm temperate and moist climate 
of montane forests at tropical latitudes facilitates a fast 
post-fire recovery of forest stands. C storage in eco­
system biomass increased with stand age, reaching in 
the first 28 years following fires a level similar to the 
60-year-old stands. This rapid C recovery was mainly 
driven by accumulation of C in live trees and the for­
est floor recovery and followed the typical pattern of 
rapid C biomass accumulation in early stages of stand 
development (Seedre et al., 2011; Alexander et al., 
2012; Kashian et al., 2013). 

The pattern of post-fire C pools recovery in the 
mixed Pinus douglasiana-hardwood forest can be de­
scribed following the stand development stages of 
Oliver & Larson, (1990) and the results of previous 
studies about forest succession in these forests (Cuevas-
Guzmán & Jardel, 2004): 

(1) The eight-year-old stands correspond to the stand 
initiation stage, where P. douglasiana saplings are the 
most abundant species in the lower vegetation layer 
and pines represent 95% of live tree biomass (33.5% 
of total biomass). A high proportion of total biomass 
(50.5%) is concentrated in downed woody debris and 
forest floor biomass represents only 6.6%. 

(2) Twenty-eight years after a fire, the developing 
stands are in the transition of the stem exclusion and 

Figure 3. Distribution of soil carbon content in the mineral soil 
(at 10, 30, 50 and 70 cm depth) in a fire chronosequence of 
tropical mixed pine-hardwood forest. Each data point repre­
sents the average of C content by soil depth, horizontal bars 
are standard error, and lines are used to graphically visualize 
the trend in average C content with soil depth. Different letters 
indicate a significant difference between ages at the same depth 
(p < 0.05) with the post hoc Tukey test. The lack of letters indi­
cates no significant differences. 

understory reinitiation stage. Live tree biomass is now 
71.3% of total biomass and pines represents 96.4% of 
this component, with an increase in understory of shade­
tolerant broad-leaved species, dominated by Clethra 
fragrans L. M. González & R. Ramírez, Fraxinus uhdei 
(Wenz.) Lingelsh, Viburnum hartwegii Benth., Ilex 
brandegeana Loes. and Myrsine juergensenii (Mez) 
Ricketson & Pipoly (Quintero-Gradilla et al., 2019). The 
forest floor shows a significant increase in biomass, 
reaching 19.1% of total biomass, and the proportion of 
downed woody debris is now reduced to 4.1%. 

Figure 4. a) Total ecosystem carbon content, bars are average with standard error and different letters indicate a significant difference 
between ages (p < 0.05) with the post hoc Tukey test, and b) Relative contribution of each pool to the total ecosystem C in a fire chron­
osequence of tropical mixed pine-hardwood forest. Mineral soil (0-70 cm depth), fine roots (0-40 cm depth), dead wood (DWD + stand­
ing dead trees), forest floor (LL + DF), and AGV (live trees + understory). 
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(3) The 60-year-old stands are entering the matura­
tion phase; live trees, downed woody debris, and forest 
floor represent 76.3%, 4.1%, and 12.1% of total bio­
mass, respectively. The most significant change ob­
served at this stage is the increase proportion of bio­
mass (14.6%) of  broad-leaved species under-canopy. 
The species with highest importance value index are 
Cornus disciflora DC., Myrsine juergensenii (Mez) 
Ricketson & Pipoly, Carpinus tropicalis Furlow., Per­
sea hintoni C.K. Allen, and Magnolia Iltisiana A. 
Vázquez (Quintero-Gradilla et al., 2019). 

The C stored in aboveground live tree biomass is 
higher in 60-year-old stands than in 28-year-old stands 
due to the biomass increase of the broad-leaved tree 
species growing under the canopy. The establishment 
of shade-tolerant species under the canopy of the first 
cohort of trees that regenerated after a stand-replace­
ment disturbance is a common feature of the stand 
development process in dense forests (Oliver & Lar-
son, 1990) and is favored by fire exclusion (Kane 
et al., 2013). Carbon storage in the understory layer 
was higher in the eight-year-old stands. The high C 
storage in herbaceous and shrub biomass reached in 
the early stages of forest succession have been associ­
ated with an open tree canopy that maintains favora­
ble conditions for its establishment, such as light, 
moisture, and nutrients (Gilliam, 2007; Jules et al., 
2008; Seedre et al., 2011). Favorable conditions that 
are decreased with forest succession after canopy 
closure (Gilliam, 2007). 

Carbon content in fine roots did not show any cor­
relation with stand age, consistent with previous stud­
ies (Howard et al., 2004; Gough et al., 2007). Carbon 
storage in standing dead trees did not change with stand 
age, suggesting that, eight years after the fire, C had 
already transferred from fire-killed trees to the downed 
woody debris pool. C content in DWD pool followed 
a pattern of high initial amounts of fire-killed fallen 
trees in the first years after a fire and then a reduction 
in C storage due to decomposition of dead wood in the 
intermediate stage, followed by an increase in the late 
stage of succession as a result of the natural mortality 
of trees (Spies et al., 1988; Brais et al., 2005; Kashian 
et al., 2013). The significant nested site effect on C 
storage in downed woody debris suggests that there 
was high variability that could not be explained only 
by stand age and that could be associated with microsite 
variation, decay heterogeneity, and management his­
tory (Harmon et al., 1986). 

C stored in the forest floor layer was 80% lower in 
eight-year-old than in 28- or 60-year-old stands, an 
effect related to fire consumption of surface fine fuels. 
Forest floor starts to accumulate C with regeneration 
and increases throughout the life of a stand until it 

reaches the maximum accumulation, where there is a 
balance between production and decomposition (Gough 
et al., 2007; Seedre et al., 2011), as described by 
Quintero-Gradilla et al., (2015). 

The carbon pool in the mineral soil is the long-term 
product of history, decomposition, and vegetation 
changes (Harden et al., 2000). The higher total soil C 
content at 70 cm of depth observed in 60-year-old 
stands may be associated with long-term processes 
strongly associated with clay particles and non-crys­
talline minerals that play an essential role in the protec­
tion and stabilization of organic matter in the soil (Six 
et al., 2002). Since soils in the study area are Alfisols 
with a characteristic subsurface argillic horizon (Mar­
tínez et al., 1993), they play a key role in C accumula­
tion. On the other hand, the effects of wildfires have 
been observed in the first years after fire and mainly 
in the superficial horizons, as reported by Quintero-
Gradilla et al., (2015) and others (Wang et al., 2001; 
Litton et al., 2004; Kashian et al., 2013). 

Total ecosystem carbon increased with stand age 
due to additional C content in the broadleaf trees’ 
strata and the higher content in mineral soil in 
60-year-old stands. The pattern of change of the total 
ecosystem carbon storage with stand age coincided 
with previous post-fire chronosequences that showed 
slow C accumulation during stand regeneration, fol­
lowed by a fast accumulation during stand develop­
ment, then reaching a maximum and remaining rela­
tively constant or declining in old-growth forest 
stands, reported for tropical forests (Pregitzer & 
Euskirchen, 2004) and for temperate and boreal for­
ests (Wang et al., 2003; Pregitzer & Euskirchen, 2004; 
Kashian et al., 2013; Seedre et al., 2014). 

Regeneration of vegetation exerts strong control on 
post-fire C recovery, capturing carbon lost during or 
after burning (Litton et al., 2004; Kashian et al., 2006). 
Although tree mortality was high (> 70% reduction in 
basal area) in the sites examined in this study, mixed­
severity fires created small gaps (< 40 ha) where the 
trees that survived the fire and the trees of surrounding 
stands functioned as seed sources, which, together with 
favorable climatic conditions, promoted the subsequent 
fast regeneration and then the recovery of C stocks. 
The relatively fast recovery of ecosystem C in biomass 
suggests that mixed Pinus douglasiana-hardwood for­
est possesses functional traits like small winged seeds 
dispersed at long distances, fast growth rate, and shade 
intolerance, which confer resilience to severe fire (Kee­
ley & Zedler, 1998). 

The management of fire-prone forest must consid­
ering a trade-offs between maximizing carbon storage 
by increasing carbon density through fire suppression 
and maintaining long-term carbon stability which 
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means minimizing loss of carbon from the system by 
reducing the risk of high-severity fires (Hurteau & 
Brooks, 2011), as well as other forest management 
goals such as biodiversity conservation, watershed 
protection, timber production, and other ecosystem 
services (Hurteau et al., 2008; Bowman et al., 2013; 
Syphard et al., 2016). Fire-induced change in carbon 
distribution among ecosystem pools could have sev­
eral implications for C storage at the landscape level 
(Kashian et al., 2006). In the first years after a fire, 
when the majority of the carbon is stored in DWD and 
the mineral soil, a fire recurrence could expose the 
soil to erosion and loss of C (Neary & Overby, 2006; 
Gough et al., 2007). Based on this assumption, it is 
recommended the protection of those sites to promote 
regeneration. Not protecting the stands from repeated 
fires could lead to a failing recovery, with consequent 
changes in the forest structure, soil carbon, and spe­
cies composition (Kashian et al., 2006). Some exam­
ples are the transition from forest to grassland or 
shrubland, with a diminished capacity for carbon 
storage, observed by Savage & Mast, (2005) in south­
western United States ponderosa pine forest and 
Alanís-Rodríguez et al., (2012) in a forest of Pinus 
pseudostrobus forest in northern Mexico. 

However, long periods of fire suppression in fire­
prone ecosystems, has resulted in an increased fuel 
loads and a change in vegetation structure, that can 
contribute to intense wildfires that produce greater 
levels of CO2 and other greenhouse gas emissions 
(Hurteau & North, 2009; Hurteau & Brooks, 2011). It 
is critical to understand the implications of fire manage­
ment actions to carbon management and other goals as 
conservation and climate change mitigation. 
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