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Abstract
Aim of study: In this study, frequency and diversity of fungal endophyte communities inhabiting twigs and branches of apparently 

healthy Q. macranthera and Q. brantii in East Azerbaijan and Lorestan provinces of Iran is presented.
Area of study: East Azerbaijan and Lorestan provinces in Iran.
Materials and methods: Culturable fungal endophytes were recovered from wood tissues using routine technique for isolation 

of fungal endophytes. The identity of fungal isolates were determined based on morphological characteristics and sequences data of 
ITS-rDNA region and Beta-tubulin gene. Frequency and diversity among fungal communities were analyzed using chi-square test and 
biodiversity indices.

Main results: The highest frequency and diversity was detected for fungal endophyte community recovered from Q. macranthera 
and East Azerbaijan province. The assemblage of endophytic fungi characterized in this study in healthy tissues of oak trees indicates 
that some of the fungi are possible latent pathogens such as Biscogniauxia mediterranea with 18.28% frequency followed by Alternaria 
alternata and Trichothecium roseum respectively. Two fungal taxa of Pyronema domesticum and Valsa persoonii are reported for the 
first time in Iran. Overall, the results of this study show that the plant species and growth location influence frequency and diversity of 
culturable fungal endophytic communities of Quercus in Iran. 

Additional keywords: Quercus macranthera, Quercus brantii, Fungal endophytes, Molecular identification.
Abbreviations used: CBS (Centraal Bureau voor Schimmelcultures); CCTU (Culture Collection of University of Tabriz); GTR 
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Introduction 

Certain microscopic fungi live at least a part of 
their life cycle inside the tissues of the plants without 
causing visible signs or symptoms and, therefore, are 
named endophytes (Petrini, 1996). Fungal endophytes 
are a taxonomically and ecologically heterogeneous 
group and seem to make up a large fraction of the 
fungal biodiversity (Petrini et al., 1992; Saikkonen 
et al., 1998; Arnold et al. 2000, 2003). Endophytes 

in plants can play important ecological roles, e.g. 
mediating plant defense reactions against pathogens 
and herbivores or influencing host responses to abiotic 
stressors such as drought (Costa Pinto et al., 2000; 
Arnold et al., 2003; Schardl et al., 2004; Arnold & 
Engelbrecht, 2007; Mejia et al., 2008; Estrada et al., 
2013). However, some endophytic fungi have proven 
to be latent pathogens of plant hosts. Furthermore, the 
role of some endophytes in host plants is still unclear 
(Mirabolfathy, 2013).
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Previous studies have shown that the diversity, 
abundance, and species composition of endophytic 
fungi can be highly affected by the locality in which 
a specific plant occurs (Carroll & Carroll, 1978; 
Petrini et al., 1982; Bills & Polishook, 1992; Fisher 
et al., 1994; Hata & Futai, 1996; Bayman et al., 
1998; Arnold, 2001; Higgins et al., 2007). At larger 
geographical scales, diversity of endophytic fungi 
varies due to latitude and annual rainfall (Arnold & 
Lutzoni, 2007), although the impact of co-varying 
factors, such as plant diversity, remains to be studied. 
Similarly, due to history of land use, plantation, and 
other factors, species diversity of endophytes differs 
at small scales (Gamboa & Bayman, 2001). Further
more, the endophyte composition differs because 
of localities (Fisher et al., 1995; Frohlich & Hyde, 
1999; Arnold et al., 2003). For example, Arnold et al. 
(2003) reported a distinctive endophytic composition 
associated with Theobroma cacao at different sites in 
Panama. Many studies investigating host associations 
of endophytic fungi have focused on distantly related 
plants, which grow within the same geographic areas. 
Contradictory results, however, have been reported 
about the predominance of host specificity (Sieber 
1989; Suryanarayanan & Kumaresan 2000; 2005; 
Arnold et al., 2000; Cannon & Simmons, 2002; Mohali 
et al., 2005; Higgins et al., 2007).

Quercus macranthera Fisch. & C.A. Mey ex 
Hohen (black oak) and Q. brantii Lindl. which are 
the most common plant species in Iran have never 
been investigated before in term of composition of 
cultivable fungal endophytic populations. Therefore, 
the aim of this research was to characterize fungal 
endophytic communities of barks in Q. macranthera 
and Q. brantii and understand if the plant host species 
or the geographical sites of growth are responsible for 
shaping the culturable fungal endophytic populations. 

Materials and Methods 

Sampling	

The culturable endophytic species of oak trees in 
Arasbaran protected area (Hatam-baig and Kaleibar 
regions, located in East Azerbaijan province), north
western Iran, as well as oak forests of Zagros region 
(Veisian, Shurab, Kaka Sharaf, Khorramabad and 
Chegani counties located in Lorestan province), 
west of Iran, were identified based on molecular 
characteristics (Fig. S1 [suppl.]). For this purpose, 
bark samples from 83 apparently healthy oak trees 
(one sample from each plant at the chest height and 
from the same side of the trunk at the height of about 

1.5 meters) were randomly collected in these regions 
between June and September 2014. Distance between 
sampling sites (km) is shown in Table S1 [suppl.].

 
Endophytic fungi isolation

Culturable endophytes were isolated following the 
procedure described by Helander et al. (2007) with 
some modifications (Blumenstein, 2010). Briefly, 
approximately 3 cm-long pieces from apparently 
healthy and living parts of each bark (cork cambium 
(phellogen) and phelloderm) sample were cut, surface 
sterilized using 75% ethanol, 4% Na-hypochlorite 
solution and 75% ethanol, for 30 seconds, 5 minutes and 
15 seconds, respectively. The sterilized material was 
air dried for 5 minutes, cut in smaller pieces (approxi
mately 5 × 5 mm2) and plated in Petri dishes containing 
potato dextrose agar (PDA; Merck, Germany). The 
Petri dishes were then incubated at room temperature 
in dark and inspected daily for two weeks for fungal 
growth. Pure cultures were established using a single 
spore method or hyphal tip technique. The identity of 
fungal strains was determined in genus level primarily 
based on morphological characteristics (Sutton, 1980; 
Seifert et al., 2011) and then further confirmed by 
DNA phylogenetic analyses. The cultures were depo
sited in the living Culture Collection of University of 
Tabriz (CCUT), Tabriz, Iran. 

DNA phylogeny

Total genomic DNA was extracted from fresh 
fungal mycelia following the protocol of Möller et 
al. (1992). The primer pairs ITS1/ITS4 (White et 
al., 1990) and Bt2a/Bt2b (Glass and Donaldson, 
1995) were used to amplify ITS-rDNA and partial 
Beta-tubulin gene (TUB), respectively. The reaction 
mixture and thermal cycling condition were the same 
as described by Arzanlou and Khodaei (2012) and 
Karimi et al. (2016). PCR products were sequenced 
in both directions using a BigDye Terminator v. 3.1 
cycle sequencing kit (Applied Biosystems, USA) as 
recommended by vendor and analyzed on an ABI 
Prism 3700 (Applied Biosystems).

Raw sequence files were edited manually using 
SeqManII (DNASTAR Inc., USA) and a consensus 
sequence was generated for each sequence. Sequences 
were subjected to Blast search analysis against the 
NCBI’s GenBank sequence database using Megablast 
for sequence similarity. Sequences with high degrees 
of similarity and ex-type strains correspond to each 
taxon obtained in this study were downloaded. For each 
locus, the sequences obtained from GenBank together 
with sequences generated in this study were aligned 
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using the multiple sequence alignment online interface 
MAFFT (Katoh & Toh, 2008) and, if necessary, ad
justed manually in MEGA v. 6 (Tamura et al., 2013). 
The best evolutionary model for each data partition 
was selected using the software MrModelTest v. 2.3 
(Nylander, 2004). For phylogenetic analysis, baye
sian inference (BI) was performed with MrBayes v. 
3.2.1 (Ronquist & Huelsenbeck, 2003). The resulting 
phylogenetic tree was printed using Fig Tree ver. 1.3.1 
(http://tree.bio.ed.ac.uk/software/figtree/)  (Rambaut, 
2009). Sequences derived from this study were de
posited in NCBI’s GenBank nucleotide database (Ta
ble S2 [suppl.]).

Statistical analysis

The frequency of fungal strains recovered from each 
site was calculated as a percentage and the frequency 
of different fungal taxa was numbered per host and 
per site. Frequency data (not normal distributions) 
obtained from oak species and different sites were 
subjected to chi-squared analysis using SAS software 
package (SAS Institute, Inc., USA, 2003). The species 
diversity among fungal communities was manually 
calculated using Excel software v. 2007 based on 
biodiversity indices including Shannon–Wiener index 
(Hʹ), C and Margalef richness (Dmarg).

Shannon–Wiener Index:   H'=                          Pi=  

Hill evenness:   EH =  

Margalef richness: Dmarg =  

Where Ni is number of individuals of each species in 
each community, N is the total number of individuals 
in community, S is the number of species encountered 
in each community. N1 is Ln (N), Pi is the proportional 
abundance of the ith individual.

Results

A total of 94 fungal isolates comprising of 30 species 
were isolated from Q. macranthera and Q. brantii 
(Table 1). The majority of identified fungal species 
(29 species) belonged to the phylum Ascomycota, 
besides one basidiomyceteous isolate, Phlebia radiata 
(Table S2 [suppl.]). At least one representative 
of each taxonomic group (identified based on 
preliminary morphological features) was subjected to 
molecular identification based on ITS-rDNA or TUB 
sequence analysis. This allowed the placement of 
our sequenced isolates into ten orders (Pleosporales, 

Xylariales, Hypocreales, Sordariales, Diaporthales, 
Botryosphaeriales, Trichosphaeriales, Eurotiales, Pezi
zales and Polyporales), which belonged to 30 species 
(Fig. 1 and 2).

In phylogeny analysis, ITS-rDNA dataset (except 
Fusarium spp.) included 98 different in-group taxa 
and Ganoderma tornatum (CBS 109679) as the out-
group taxon. The final single locus dataset comprised 
972 characters (including alignment gaps), of which 
635 characters were unique site patterns. MrModelTest 
v. 2.3 software recommended general time reversible 
(GTR) substitution as the best evolutionary model with 
gamma distribution, invariable sites and Dirichlet base 
frequencies. Bayesian inference of ITS-rDNA region 
resided our strains in 26 species, with the highest 
posterior probability (Fig. 1).

Beta-tubulin dataset for the phylogenetic analysis 
of Fusarium spp. consisted of 23 in-group taxa, Peni
cillium araracuarense (CBS 113149) as out-group 
taxon, and a total of 731 characters including 332 uni
que site patterns. MrModelTest v. 2.3 software selec
ted Hasegawa-Kishino-Yano (HKY) substitution 
model as the best evolutionary model with gamma 
distribution and Dirichlet base frequencies. Based on 
the results, the identity of our strains was determined 
as F. avenaceum, F. oxysporum, F. solani and F. 
proliferatum (Fig. 2).

In this study, across the seven sampling counties, 
the numbers of 94 fungal isolates were recovered from 
both Q. macranthera (70 strains) and Q. brantii (24 
strains) (Table 1 and Table S2). Chi-square analysis 
showed this frequency is significantly different 
between both hosts (Tables 2, 3). Proportional to the 
numbers of isolates, the most species diversity (24 
taxa) was found among fungal community obtained 
from Q. macranthera (Table 4, Fig. 3) further 
corroborated by higher species diversity indices of 
Shannon–Wiener index (Hʹ) and Margalef richness 
(Dmarg) (Table 4). On the contrary, evenness (EH) index 
for fungal community recovered from Q. macranthera 
was lower than Q. brantii (Table 4). It showed that 
the frequency of some taxa was higher among fungal 
community recovered from Q. macranthera (Tables 1 
and 4, Fig. 3). Generally, these results highlight that 
barks of Q. macranthera is probably more preferable 
to be colonized by endophytic fungi than barks of Q. 
brantii. 

Between provinces, 70 isolates were recovered from 
East Azerbaijan (67 isolates from Q. macranthera 
and 3 isolates from Q. brantii) and 24 isolates from 
Lorestan (3 isolates from Q. macranthera and 21 
isolates from Q. brantii). This observation was 
further corroborated using Chi-squared analysis, so 
that a significant difference was detected between 

−∑i⁼1Pi log Pi 
S Ni

H'

S₋1

N

N1

logN

http://tree.bio.ed.ac.uk/software/figtree/
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Table 1. Frequency of occurrence (%) of the fungal endophytes obtained from surface-sterilized bark tissues of Quercus 
macranthera (Q1) and Q. brantii (Q2).

Isolated fungus
East Azerbaijan province Lorestan province

Total 
(%)Kaleibar Hatam-baig Veisian Shurab Kaka Sharaf Khorramabad Chegani

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2
Alternaria alternata 6.38 0.0 7.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.82
Arthrinium arundinis 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Biscogniauxia 
mediterranea

5.31 0.0 4.25 0.0 0.0 2.12 0.0 2.12 0.0 2.12 0.0 1.06 0.0 1.06 18.04

Epicoccum nigrum 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Fusarium avenaceum 2.12 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.18
Fusarium oxysporum 1.06 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.12
Fusarium proliferatum 0.0 0.0 1.06 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.12
Fusarium solani 2.12 0.0 1.06 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.24
Nigrospora oryzae 3.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.19
Ochrocladosporium 
elatum

1.06 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.12

Pyronema domesticum 2.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.12
Sordaria fimicola 1.06 0.0 1.06 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.18
Sordaria sibutii 2.12 0.0 3.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.31
Valsa persoonii 0.0 0.0 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Trichothecium roseum 4.25 0.0 5.31 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.62
Clonostachys rosea 1.06 0.0 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.12
Neoscytalidium 
dimidiatum

0.0 1.06 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 1.06 0.0 0.0 3.18

Daldinia vernicosa 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Daldinia loculata 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Daldinia palmensis 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Chaetomium globosum 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Discula quercina 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Penicillium commune 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Penicillium spinulosum 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Paecilomyces variotii 0.0 0.0 0.0 1.06 0.0 1.06 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 3.18
Paecilomyces formosus 3.19 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.24
Phlebia radiata 0.0 0.0 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06
Beauveria bassiana 0.0 0.0 0.0 0.0 0.0 1.06 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 2.12
Curvularia neergardii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06 1.06
Curvularia spicifera 0.0 0.0 0.0 1.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.06 2.12
Taxa diversity 
per host per county 

16 1 16 2 2 10 0 3 0 1 0 2 0 3 30

Frequency of isolates  
per host per county

37 1 30 2 3 10 0 4 0 2 0 2 0 3 94

% frequency of isolates  
per host per county

39.3 1.06 31.91 2.13 2.13 10.64 0 4.26 0 2.13 0 2.13 0 3.19 100

Frequency of isolates 
per county

38 32 13 4 2 2 3 94

% frequency of isolates
per county

40.42 34.04 13.82 4.25 2.12 2.12 3.19 100

% frequency of isolates 
per province

74.47 25.53 100
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MH758704 Daldinia vernicosa strain CCTU134

MH758702 Daldinia loculata strain CCTU112

MH758703 Daldinia palmensis strain CCTU113

MH754659 Nigrospora oryzae strain CCTU125

MH754660 Nigrospora oryzae strain CCTU133

MH758697 Arthrinium arundinis strain CCTU127

MH754668 Biscogniauxia mediterranea strain CCTU147

MH754669 Biscogniauxia mediterranea strain CCTU227
KX267747 Biscogniauxia mediterranea strain CCTU120
KX267748 Biscogniauxia mediterranea strain CCTU121
1KX267749 Biscogniauxia mediterranea strain CCTU122
KX267750 Biscogniauxia mediterranea strain CCTU123

KR909208 Biscogniauxia mediterranea isolate AS
KM216787 Biscogniauxia mediterranea voucher CBS101016

MH758714 Asordaria sibutii strain CCTU223

MH860577 Asordaria sibutii strain CBS 568 72
MH758712 Sordaria fimicola strain CCTU224

MH758713 Sordaria fimicola strain CCTU228
MH758699 Chaetomium globosum strain CCTU107

MH758706 Trichothecium roseum strain CCTU142

MH754663 Beauveria bassiana strain CCTU229

MH758700 Clonostachys rosea strain CCTU117
MH864507 Clonostachys rosea strain CBS 127294

MH758701 Clonostachys rosea strain CCTU230
MH758715 Paecillomyces variotii strain CCTU232

MH758716 Paecillomyces formosus strain CCTU105
MH758718 Paecillomyces formosus strain CCTU140

MH758717 Paecillomyces formosus strain CCTU114

MH567073 Paecillomyces formosus strain RUF PF5
GU968651 Paecillomyces formosus strain DTO

FJ389926 Paecillomyces formosus strain CBS 372 70

MH758698 Aspergillus flavua strain CCTU145
KJ175414 Aspergillus flavua isolate CBS 100927
MH864264 Aspergillus flavua strain CBS 126855

MK046735 Penicillium spinulosum strain CCTU130

MF072671 Penicillium spinulosum strain CBS 382 48

MH758707 Penicillium commune strain CCTU150
MH856359 Penicillium commune strain CBS 311 48

MH754662 Neoscytalidium dimidianum strain CCTU233
KF531820 Neoscytalidium dimidianum strain CBS 499 66

MH754666 Valsa persoonii strain CCTU231

MH754657 Alternaria alternata strain CCTU136
MH754658 Alternaria alternata strain CCTU137

NR 131316 Alternaria alternata strain CBS 916 96
FJ196306 Alternaria alternata strain CBS 916 96

MH758705 Discula quercina strain CCTU104
GQ452265 Discula quercina strain D38

MH855509 Valsa persoonii strain CBS 266 34

AY853196 Discula quercina strain CBS 115013

MH754664 Curvularia spicifera strain CCTU234

MH758710 Ochrocladosporium elatum strain CCTU132

MH758711 Ochrocladosporium elatum strain CCTU108
MH760732 Epicoccum nigrum strain CCTU118

MH758708 Pyronema domesticum strain CCTU139
MG098284 Pyronema domesticum strain NW FVA2396

MH857649 Pyronema domesticum strain CBS 299 56
MH758709 Pyronema domesticum strain CCTU143

MH857642 Phlebia radiata strain CCTU236

JQ520217 Ganoderma tornatum strain CBS 109679

KX449485 Phlebia radiata strain Champ 81
MH857642 Phlebia radiata strain CBS 285 56

MH860655 Epicoccum nigrum strain CBS 173 73
MH857851 Epicoccum nigrum strain CBS 239 59

EU040233 Ochrocladosporium elatum strain CBS 146 33
AF393699 Ochrocladosporium elatum strain ATCC 11280

MH754665 Curvularia neergaardii strain CCTU235
KJ909784 Curvularia neergaardii isolate DAOM228085
KC315933 Curvularia neergaardii isolate F1

MH858442 Curvularia spicifera strain CBS 315 64
MH863648 Curvularia spicifera strain CBS 125738

MH855508 Valsa persoonii strain CBS 265 34

JX966543 Neoscytalidium dimidianum isolate UM 249

MH856352 Penicillium commune strain CBS 297 48

MH861217 Penicillium spinulosum strain CBS 336 79

GU968667 Paecillomyces variotii strain DTO 63E6
FJ389930 Paecillomyces variotii strain CBS 338 51

KY703872 Clonostachys rosea strain PC1

MH858026 Beauveria bassiana strain CBS 212 61
AY334535 Beauveria bassiana isolate Bb 9001

EU552162 Trichothecium roseum culture collection CBS 113334
KY610499 Trichothecium roseum strain JU P03

MH864955 Chaetomium globosum strain CBS 128476
MG645187 Chaetomium globosum isolate KJMT FP 4 5

MH862606 Sordaria fimicola strain CBS 723 96
MH860820 Sordaria fimicola strain CBS 911 73

AY681180 Asordaria sibutii strain CBS 768 96

JF295128 Biscogniauxia mediterranea culture collection CPC 18216

KF144889 Arthrinium arundinis culture CBS 732 71
MF627422 Arthrinium arundinis strain EGG3

MH754661 Nigrospora oryzae strain CCTU124
MH748173 Nigrospora oryzae isolate CR34

MH860749 Nigrospora oryzae strain CBS 480.73

MH862912 Daldinia palmensis strain CBS 113039
JX658510 Daldinia palmensis strain CBS 113039

KU684018 Daldinia loculata isolate CBS 113971
JQ758725 Daldinia loculata isolate AK0251

NR152501 Daldinia vernicosa CBS 119316
JX658519 Daldinia vernicosa strain CBS 161.31

Figure 1. Bayesian inference phylogenetic tree of the ITS dataset belong to ascomycetous fungal taxa obtained in this study 
using MrBayes v. 3.2.1. The scale bar shows 0.09 expected changes per site. The tree was rooted to Ganodermatornatum (CBS 
109697). Our isolates generated in this study are shown as CCTU.



Saeid Ghasemi-Esfahlan, Sima Khodaei, Kaivan Karimi, Majid Tavakoli, et al.

Forest Systems March 2019 • Volume 28 • Issue 1 • e003

6

MF662661 Fusarium solani strain W1694

MF662661 Fusarium solani strain C978

KM232059 Fusarium solani strain CBS 119600

MH760737 Fusarium solani strain CCTU188

MH760738 Fusarium solani strain CCTU189

MH760736 Fusarium solani strain CCTU187

MH760732 Fusarium avenaceum strain CCTU196

KP170733 Fusarium avenaceum strain JA 0925

KP674237 Fusarium avenaceum isolate Z313

FJ154744 Fusarium acuminatum isolate R 7408

KM249115 Fusarium tricinclum isolate F747

MH760734 Fusarium proliferatum strain CCTU194

KU603920 Fusarium proliferatum strain CBS133030

KF466444 Fusarium proliferatum strain ITEM 2287

MH760735 Fusarium proliferatum strain CCTU195

LT970790 Fusarium proliferatum isolate TuPo1

LT970791 Fusarium proliferatum isolate TuPo5

AF333951 Fusarium concentricum strain NRRL29944

MH760733 Fusarium oxysporum strain CCTU193

MF662623 Fusarium oxysporum strain C02

KT794173 Fusarium oxysporum strain CBS 140424

KM232080 Fusarium circinatum strain CBS 405 97

MF687263 Fusarium graminearum strain S761

0,03

GU981642 Penicillium araracuarense culture collection CBS 113149

Figure 2. Bayesian inference phylogenetic tree of the β-tubulin dataset belong to Fusarium spp. obtained  in 
this study using MrBayes v. 3.2.1. The scale bar shows 0.03 expected changes per site. The tree was rooted to 
Penicilliumararacuarense (CBS 113149). Fusarium spp. isolates generated in this study are shown as CCTU.
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Table 3. Chi-squared values obtained from comparisons of frequencies of endophytic fungi recovered from 
Quercus macranthera and Q. brantii between sampling locations. K: kaleibar; H: hatam-baig; V: veisian; S: 
shurab; Ks: kaka sharaf; Kh: khorramabad; Ch: chegani; ** and * show significant different at level of 0.01 and 
0.05 respectively. 

Host
East Azarbaijan Lorestan

K-H V-S V-Ks V-Kh V-C S-Ks S-Kh S-Ch Ks-Kh Ks-C Kh-C
Q. macranthera 0.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. brantii 0.33 2.57 5.33** 5.33** 3.76 0.66 0.66 0.14 0.00 0.2 0.2
Total 0.51 4.76* 8.06** 8.06** 6.25* 0.66 0.66 0.14 0.00 0.2 0.2
Q. macranthera             38.72**

Q. brantii             13.5**

Total             22.51**

Table 2. Chi-squared values obtained from comparisons of frequencies 
of endophytic fungi recovered from Quercus macranthera and Q. 
brantii per location.

Locations
East Azarbaijan/ Lorestan provinces

Chi df
Q. macranthera Q. brantii

Kaleibar 37 1 34.1** 1
Hatam-baig 30 2 24.5** 1
Veisian 3 10 3.76 1
Shurab 0 4 4** 1
Kaka Sharaf 0 2 2** 1
Khorramabad 0 2 2** 1
Chegani 0 3 3** 1
Total 70 24 22.51** 1

** and * show significant different at level of 0.01 and 0.05 respectively.

Table 4. Values of diversity indices calculated on diversity of endophytic fungal taxa recovered from both species of Quercus 
spp. in different counties located in East Azerbaijan and Lorestan provinces.

Factors No. of  
isolates No. of taxa Frequency (%) Margalef richness 

(Dmarg)
Shannon–Wiener 

Index (Hʹ)
Hill’s evenness 

(EH)
host

Quercus macranthera 70 24 74.47 5.41 2.74 0.86
Quercus brantii 24 11 25.53 3.14 2.14 0.89

provinces
East Azerbaijan 70 26 74.47 5.64 2.82 0.86
Lorestan 24 14 25.53 4.09 2.31 0.87

counties
Kaleibar 38 17 40.42 4.39 2.47 0.87
Hatam-baig 32 18 34.04 4.9 2.35 0.81
Veisian 13 12 13.82 4.2 2.26 0.9
Shurab 4 2 4.26 1.44 1.01 0.91
Chegani 3 3 3.2 1.8 1.09 1
Kaka Sharaf 2 1 2.13 1.44 0 0
Khorramabad 2 2 2.13 1.44 0 0
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provinces and even counties in terms of the numbers 
of fungal strains recovered from Q. macranthera and 
Q. brantii besides Veisian county (Table 3). In scale of 
counties, the highest frequency of isolates was found in 
Kaleibar and Hatam-baig counties in East Azerbaijan 
and followed by Veisian in Lorestan province (Table 
4). Moreover, the highest species diversity was also 
detected in fungal community of Hatam-baig and 
Kaleibar in East Azerbaijan and followed by Veisian 
further confirmed by biodiversity indices (Table 4). 
This highlights the significant effect of growth location 
on the frequency and diversity of fungal endophyte 
community of Quercus in Iran.

Discussion

Overall, the observations of this study suggest 
that both plant species and plant growth location 
are involved in distribution and diversity of fungal 

endophytic communities of Quercus in Iran. It appears 
that higher frequency and diversity of fungal endophy
tic community on Q. macranthera in East Azerbaijan 
is probably due to either old establishment of Q. 
macranthera in East Azerbaijan or more favorable 
atmospheric condition of East Azerbaijan (mountainous 
and temperate climate) for establishment of this plant 
species and fungal communities. In the present study 
all samplings and isolations were made during summer 
2014, thus, differences between isolation frequencies 
cannot be due to date of sampling. Giauque and Haw
kes (2013) have examined the relative importance 
of environmental and spatial factors in structuring 
endophyte communities of Panicum hallii Vasey and 
P. virgatum L. They concluded that environmental 
factors related to historical and current precipitation 
were the most important predictors of endophyte 
communities. In a survey of endophytic fungal com
munities in leaves of Metrosideros polymorpha 
Gaudich.  across  wide  environmental  gradients  in 

Quercus macranthera
Quercus brantii

Alternaria alternata

Chaetomium globosum

Daldinia loculata
Epicoccum nigrum

Fusarium solani

Paecilomyces formosus

Pyronema domesticum

Valsa persoonii

Arthrinium arundinis Biscogniauxia mediterranea Phlebia radiata

Curvalaria spicifera

Discula quercina

Fusarium proliferatum

Oclurocladosporium elatum

Penicillium spinulosum

Trichothecium roseum

Curvularia neergardii

Daldinia vernicosa

Fusarium oxysporum

Nigrospora oryzae

Penicillium commune

Sordaria sibutii

Clonostachys rosea

Daldinia palmensis

Fusarium avenaceum

Neoscytalidium dimidiatum

Paecilomyces variotii

Sordaria fimicola

Beauveria bassiana

Figure 3. Frequency and diversity of fungal endophyte taxa recovered from both Quercus macranthera and Q. 
brantii.
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Hawaiian landscape, among-site variation in endophyte 
community composition was found to be correlated 
strongly with temperature and rainfall (Zimmerman & 
Vitousek, 2012). 

The most frequent fungal species recovered from 
across the counties were Biscogniauxia mediterranea, 
Alternaria alternata, Trichothecium roseum, Sorda
ria sibutii and Paecilomyces formosus. Biscogniauxia 
mediterranea had the highest relative frequency 
(18.28%) recovered from Q. macranthera and Q. brantii 
in all counties (Table 1). This fungus has been shown 
to be a latent pathogen, with potential to cause major 
losses to oak industry in Iran (Mirabolfathy, 2013). 
Alternaria alternata which is frequently identified as 
endophyte (Ragazzi et al., 2001; Selim et al., 2011; 
Maheswari & Rajagopal, 2013; Nalini et al., 2014) 
was the second most frequent endophyte and followed 
by Trichothecium roseum. Different endophytic fungal 
taxa showed different relative frequencies in two oak 
species (or different locations). Quercus macranthera 
yielded the greater fungal diversity, with 24 different 
taxa being isolated (Tables 1, 4 and Table S2). Some 
of the endophytic species were found in only one host 
species, some are cosmopolitan, not specific to oak 
and some are rarely found. It shows that these fungal 
taxa could either restrict only to those counties or 
may have spread recently across those counties. For 
example, the only isolate of Curvularia neergardii 
came from Q. brantii. Furthermore, three species of 
Daldinia with a relative frequency of 4.28% were 
only obtained from Q. macranthera. The composition 
and abundance of the endophytes varied according to 
the host tested. Although the data may indicate that, 
some of fungal endophytes dominate in mycobiota of 
Quercus spp., whether it is a result of natural selection 
or not, awaits detailed investigations.

To the best of our knowledge all of the species 
identified in this study, except B. mediterranea (Davari 
et al., 2003; Mirabolfathy, 2013), are reported for the 
first time from Q. macranthera and Q. brantii. Recently, 
Hajizadeh et al., (2015) have studied species diversi
ty of fungal endophytes of Q. brantii in Kurdistan 
province, Iran. They reported Cladosporium tenellum, 
Paecilomyces formosus, Petriella guttulata, Preussia 
australis, and Sordaria sibutii. This is the first report 
of Pyronema domesticum and Valsa persoonii for 
the mycobiota of Iran. To the best of our knowledge, 
this is the first survey of cultivable endophytic fungal 
community of Q. macranthera. Several investigations 
have been conducted regarding fungal endophytes of 
different oak species (Ragazzi et al., 2001; Anselmi 
et al., 2004; Kwasna et al., 2016). Kwasna et al. 
(2016) characterized root fungal endophytes of Q. 
rubor. They identified a more diverse fungal species 

including 126 taxa (Zygomycota, Ascomycota and 
Basidiomycota), and number of species was higher in 
roots subjected to floods. It seems that the studied tis
sue (root) had an effect on species diversity of isolated 
endophytes. In 2001, endophytes of current-year twigs, 
buds and leaves of Q. cerris were investigated and the 
results revealed organ specificity for endophytic fungi 
(Ragazzi et al., 2001).

In the assemblage of endophytic fungi in healthy 
tissues of oak trees, some of them may be possible 
latent pathogens of oak. Our data revealed a low 
proportion of strains of oak phytopathogenic fungi. 
However, B. mediterranea and Ph. radiata, usually 
associated with oak decline were isolated (Boddy & 
Rayner, 1983; Mirabolfathy, 2013). Biscogniauxia 
mediterranea is mainly related to charcoal dise
ase (Mirabolfathy, 2013). Interestingly, no wood-
decaying basidiomycetes associated with oak trees 
were recovered in East Azerbaijan province. Some of 
the recovered genera in this study have previously been 
reported as potential biocontrol agents, which draws 
attention to further clarification of their antimicrobial 
properties (Gonzalez & Tello, 2011). Of those, several 
species belonging to genera such as Chaetomium (Ch. 
globosum), Epicoccum (E. nigrum) and Fusarium (F. 
proliferatum) have been here obtained. Neoscytalidium 
dimidiatum was only isolated from Quercus brantii in 
this study. Bakhshizadeh et al., (2014) have reported 
N. dimidiatum as a human pathogen from Iran. This 
highlights that further investigations are needed to 
fully elucidate the ecology and putative use of wood-
inhabiting endophytes.

Although endophytic fungi are known to be 
ubiquitously distributed in terrestrial plants and the 
plant itself benefits from these hidden inhabitants as 
they modulate host nutrition, metabolites, and stress 
response (Yuan et al., 2010; Soltani et al., 2016), only 
recently, intense research efforts have been sought to 
build a more detailed understanding of biodiversity and 
bioprospecting of endophytic fungi (Aly et al., 2010; 
Soltani et al., 2016). Herein, we focused on cultivable 
fungal species, however uncultivable strains could be 
a big portion of endophytic fungal community. Since 
those strains could be, for example the candidate fungi 
for production bioactive molecules (Tejesvi et al., 2011), 
future surveys should focus on metagenomics and 
transcriptomics approaches to study the functional role 
of those hidden members of the microbial population.

Conclusions

The frequency and diversity of fungal community 
recovered from Q. macranthera and East Azerbaijan 
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province was far higher than Q. brantii and Lorestan 
province respectively. Accordingly, our data and 
analyses demonstrate that both oak species and growth 
locations play a prominent role in shaping the frequency 
and diversity of fungal endophyte community of 
Quercus in Iran.
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