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Abstract
Aim of study: To assess terrestrial laser scanning (TLS) accuracy in estimating biometrical forest parameters at plot-based level in 

order to replace manual survey for forest inventory purposes.
Area of study: Monte Morello, Tuscany region, Italy.
Materials and methods: In 14 plots (10 m radius) in dense Mediterranean mixed conifer forests, diameter at breast height (DBH) 

and height were measured in Summer 2016. Tree volume was computed using the second Italian National Forest Inventory (INFC II) 
equations. TLS data were acquired in the same plots and quantitative structure models (QSMs) were applied to TLS data to compute 
dendrometric parameters. Tree parameters measured in field survey, i.e. DBH, height, and computed volume, were compared to 
those resulting from TLS data processing. The effect of distance from the plot boundary in the accuracy of DBH, height and volume 
estimation from TLS data was tested.

Main results: TLS-derived DBH showed a good correlation with the traditional forest inventory data (R2=0.98, RRMSE=7.81%), 
while tree height was less correlated with the traditional forest inventory data (R2=0.60, RRMSE=16.99%). Poor agreement was 
observed when comparing the volume from TLS data with volume estimated from the INFC II prediction equations.

Research highlights: The study demonstrated that the application of QSM to plot-based terrestrial laser data generates errors in 
plots with high density of coniferous trees. A buffer zone of 5 m would help reduce the error of 35% and 42% respectively in height 
estimation for all trees and in volume estimation for broadleaved trees.

Additional key words: LiDAR; geometrical modeling metrics; wood volume; forest inventory, tree segmentation; CompuTree; 
SimpleTree.

Abbreviations used: DBH (diameter at breast height); LiDAR (light detection and ranging); MAE (mean absolute error); MBE 
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Introduction

Terrestrial laser scanning (TLS), also known as 
ground-based Light Detection and Ranging (LiDAR), 
is an active remote sensing technique that acquires 
dense 3D point clouds from object surfaces using 
laser scanner. The introduction of TLS in the last two 
decades allowed for major changes in data collection 
for forest inventory purposes due to the possibility of 

rapid, automatic and periodic measurements of many 
important forest inventory attributes (Liang et al., 
2016). TLS allows measurements of 3D tree structure 
with millimeter-level detail and estimates of forest 
inventory attributes (Dassot et al., 2012; Bauwens et 
al., 2016).

The first studies which evaluated TLS for forest 
inventory, starting in the early 2000s, focused on tree 
attribute estimation (Simonse et al., 2003; Aschoff 
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& Spiecker, 2004; Hopkinson et al., 2004; Thies & 
Spiecker, 2004; Thies et al., 2004; Watt & Donoghue, 
2005; Henning & Radtke, 2006; Maas et al., 2008). 
The main goal of these studies was to demonstrate the 
potential of TLS for faster and more accurate measu-
rements compared to traditional field inventories. Later, 
the emphasis shifted to evaluating the capability of 
TLS to estimate stem and branch volume (Holopainen 
et al., 2011; Dassot et al., 2012), and biomass (Calders 
et al., 2015; Ishak et al., 2015; Rahman et al., 2017) 
and important forest attributes not directly measured 
in conventional forest inventories, such as the volume 
of parts of trunk with certain radii and the branches 
of certain size (Raumonen et al., 2013; Hackenberg et 
al., 2015a). These later studies demonstrated that the 
precision of volume predictions from TLS were similar 
to those of predictions from allometric models.

For inventory purposes in circular sample plots, 
ground-based LiDAR data are acquired following three 
approaches (Liang et al., 2016). In the first approach, 
single scan (SS), the laser scanner is located at the center 
of the plot and the trees are scanned by only one full 
field-of-view scan. In the second approach, multiple scan 
(MS), the laser scanner is placed in different locations 
inside and outside of the plot and a scan is carried out 
from each location. The point clouds generated from 
the scans are then co-registered by means of artificial 
reference targets. The third approach, multi-single scan 
(MSS), is similar to multiple scan, but without artificial 
reference targets. Instead, the co-registration is based 
on detected trees. Amongst the three approaches, the 
single scan approach is the simplest and fastest for data 
acquisition, but the occlusion of trees by other trees, 
branches and brush can result in the omission of up to 
20% of the trees present in the plot (Mengesha et al., 
2015).

According to Bauwens et al. (2016), MS produces 
the best results to describe the upper part of the canopy 
with respect to the SS, while, according to Liang 
& Hyyppä (2013), the stem-detection accuracy is 
significantly improved using the MSS approach with 
respect to the single scan. A complication in the use of 
MSS is that matching the multiple data sets is difficult 
and can pose a problem. The MS approach seems to be 
the most accurate approach for mapping forest sample 
plots, allowing full coverage of the stem surface. It is 
also the method that requires the longest time to scan 
plots and post-process TLS data. While MS and MSS 
both represent improvements over single-scan, there is 
a lack of studies comparing the relative accuracy of the 
two approaches.

It is worth noting that studies have shown that for 
sites with rough terrain, the topographic relief causes 
more occlusion than tree stems (Trochta et al., 2013). 

The standard method of selecting the position of a TLS 
instrument during a survey is currently made manually 
and subjectively by the operator on the basis of his 
or her skills and experience. Mozaffar & Varshosaz 
(2017) proposed a new automated algorithm that 
finds the optimum locations of a TLS, thus ensuring 
completeness of data and minimizing the number of 
scanning locations. The algorithm that they proposed 
is able to determine the station positions automatically 
and provided 99.5% coverage for simulated data and 
91% coverage in real-world cases.

Regardless of the approach used to acquire TLS data, 
Newnham et al. (2015) assert that the use of terrestrial 
laser scanner for plot-scale measurements has not yet 
replaced manual measurement methods, in spite of the 
unparalleled structural information that it can capture, 
as it was anticipated more than 10 years ago from 
various authors. According to Newnham et al. (2015) 
“the TLS has not come to fruition because the strength 
of TLS is not in replicating measurements that can be 
easily done manually”; conversely it is “in providing 
an assessment of structure that has not been achievable 
by any other means”. Newnham et al. (2015) are 
convinced that, to reach the full potential of this remote 
sensing instrument, it should not “be viewed as a 
logical progression of existing plot-based measurement 
but it should be viewed as a disruptive technology 
that requires a rethink of vegetation surveys and their 
application across a wide range of disciplines”.

TLS data processing methods which allow the 
automatic reconstruction of accurate and precise 3D 
models of the tree were defined by Raumonen et al. 
(2013) as quantitative structure models (QSMs). QSMs 
allow one to derive geometrical modelling metrics in 
hard targets, such as tree stems and branches, which 
can be fully modelled (Newnham et al., 2015). The 
models represent the trees as hierarchical collections 
of cylinders or other building blocks which provide 
the volume and diameter of branch segments needed 
to estimate the total above ground biomass. The theory 
behind some QSM deriving methods (Xu et al., 2007; 
Livny et al., 2010; Côté et al., 2011, 2012) is based 
on the allometric scaling laws in biology (West et 
al., 1997) which describes the distribution systems of 
vascular plants by branching network in which the sizes 
of tubes regularly decrease.

From allometric scaling laws, another basis for 
QSMs was derived: metabolic scaling theory (Enquist 
et al., 2009) which provides “a quantitative, predictive 
framework for understanding the structure and dynamics 
of an average idealized forest” predicting a universal 
scaling law of tree growth by linking tree architecture 
to physiological function using fractals. These theories 
were tested by Bentley et al. (2013) who explored 
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patterns of external architecture within and across a 
tree by measuring the ratio radii/lengths and computing 
scaling exponents from five species. These concepts can 
be considered fundamental for the definition of QSM. 
In QSM, a tree is modeled as a hierarchical collection of 
cylinders (Raumonen et al., 2013, 2015; Calders et al., 
2015) with additional assumptions about geometrical 
tree properties including branching structure, branching 
order, volumes, lengths, angles, and taper. Beside 
cylinders, in QSM other building blocks and “hybrid” 
models are used to model a tree such those reported in 
Åkerblom et al. (2015). The QSM approach has recently 
been expanded to 4D growth models by modifying 
theoretical plant growth algorithms to have stochastic 
components that produce the characteristics structural 
properties for each species (Potapov et al., 2016). At the 
same time, theories of resource distribution networks, 
such as metabolic scaling theory, are being tested and 
further refined by the use of TLS data (Seidel, 2017; 
Trochta et al., 2017). TLS can provide new approaches 
to the scaling of woody surface area and crown area, 
and thereby better quantify the metabolism of trees.

In addition to the QSM method, i.e. the cylinder 
approach, the voxel-based approach is used to develop 
solid models of trees (Gorte & Pfeifer, 2004; Moskal 
& Zheng, 2012; Vonderach et al., 2012; Hosoi et al., 
2013; Bienert et al., 2014). In this case, LiDAR-derived 
point-cloud data are converted for the target into voxels, 
and, from those volume elements, solid model of the 
entire tree − composed of consecutive voxels filling 
the outer surface and the interior of the stem, large and 
small branches − is obtained. In their study, Kunz et 
al. (2017) compared one voxel-based and two cylinder-
based methods for wood volume estimation of 24 trees 
of Acer platanoides L., Acer pseudoplatanus L., Sorbus 
aucuparia L., and Betula pendula Roth, correlating the 
derived volume estimates from the point clouds with 
xylometric reference volumes for each tree. According 
to their results, the voxel-based method achieved the 
best results due to being more precise than cylinder-
model based methods.

The objective of the present study was to assess TLS 
feasibility and accuracy in estimating biometrical forest 
parameters at plot-based level in dense Mediterranean 
mixed conifer plantations located in peri urban area 
using a QSM approach (Hackenberg, 2015a). In addi-
tional goal of the study was to confirm or to retract the 
conclusions of  Newnham et al. (2015) about the inability 
of TLS to replace manual plot-based survey methods 
normally used in traditional forest inventory, to discuss 
if TLS could become an instrument operationally usable 
in forest inventories and under which conditions, and to 
eventually consider what operational measures can be 
adopted to increase estimation accuracy.

Material and methods

Study area and data collection

Study area

Monte Morello (934 m a.s.l.) is a mountain located 
NW of Florence (Tuscany region, Italy). According to 
Arrigoni et al. (1997), in the historic past browsing and 
grazing have considerably altered the forest vegetation 
of Monte Morello, while tillage has transformed 
it. At the beginning of 1800, the Monte Morello 
range substantially lacked vegetation. To reduce 
hydrogeological instability, which caused problems 
for the towns located on the slope of Monte Morello, 
in 1909, reforestation started and was conducted 
until the early years of the 1980's, with pauses during 
wartime (Maetzke, 2002). This reforestation allowed 
the restoration of the over-exploited woods higher 
up the slope (Arrigoni et al., 1997). Conifer species, 
in particular black pine (Pinus nigra J. F. Arnold), 
Brutia pine (Pinus brutia Ten.), and Mediterranean 
cypress (Cupressus sempervirens L.), were chosen 
for their capability to colonize bare earth. They are 
responsible for the molding of the landscape around 
Florence which is characterized by pure or mixed high 
forests recognizable from far away in the city. For 
almost one century, few thinning interventions were 
done and this led to a scarce renovation of conifer 
species while the shade tolerant broadleaves species 
of the corresponding altitudinal layer returned to the 
understory, i.e. manna ash (Fraxinus ornus L.) as 
described by Gatteschi & Meli (1996).

The study area is located on the west side of Monte 
Morello. Stands are even-aged high forests composed 
of coniferous, mainly Brutia pine, black pine, Medi-
terranean cypress, and broadleaf, predominantly downy 
oak (Quercus pubescens Willd.) and Turkey oak (Quercus 
cerris L.) species. The presence of manna ash in the 
understory is also significant in terms of the number of 
trees, but less significant in terms of biomass. Table 1 
describes the characteristics of forest site.

Dendrometric ground measurements

Dendrometric ground measurements were collected 
in 14 circular plots which were established for a 
previous study according to an unaligned systematic 
sampling design that allowed for ensuring of an adequate 
representation of all structural types in the forest stand 
of the study area (Fig. 1). The radius of each plot was 13 
m, which corresponds to 530.93 m2.

Field surveys were carried out during the summer 
(June-September) of 2016. The center of each circular 
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plot was identified with a chestnut stake emerging 
40-50 cm above the ground level. For each tree with 
diameter at breast height (DBH) bigger or equal to 3.5 
cm, the species, the healthy state (unharmed, broken 
or dead), and the DBH were recorded. The polar 
coordinates of each tree were collected using a TruPulse 
Laser Rangefinder 200/B (Laser Technology, Inc., 
Centennial, USA) and then converted into Cartesian 
coordinates with origin in the plot centre (Wilson 
2000). For a subsample of 10 trees per plot, the height 
was also measured with a Haglof Vertex IV. These trees 
were selected subjectively in order to distribute height 
measures along the DBH range per each plot and to 
measure only trees with very visible tops.

Terrestrial Laser Scanner data collection

TLS data were acquired using a Focus3D X 130 (FA-
RO Technologies Inc., Florida, USA). Features of the la-
ser sensor are reported in Table 2. The laser scanner offers 
an integrated camera, allowing for post-scan acquisition 
of co-registered high-resolution RGB images.

Scanning activities were conducted from November 
2015 to February 2016 (leaves off for broadleaves) 
in clear sky conditions and on windless days. For 
each plot, three scans were carried out by locating the 

Table 1. Characteristics of Monte Morello study area
Location Monte Morello
UTM 32N coordinates 679584.45 min East, 680022.46 max East, 4857883.75 min North, 

4858759.15 max North
Surface 16.44 ha
Altitude (m a.s.l.) min 554, max 637, mean 604
Slope (°) min 2.05, max 20.15, mean 13.73
Mean annual temperature 13.9 °C
Annual rainfall 1003 mm
Soil type Loam or clay loam texture, with average values of sand and clay of 38 and 

28%, respectively. The soils were rich in carbonates and showed a moderate-
ly alkaline pH

Forest system Planted forest
Tree species composition (% of total basal area) 43% Brutia pine, 31% European black pine 10% Turkey oak, 9% Italian 

cypress, 7% Other species
Forest age structure/Age in 2017 Two even-aged big groups 51 and 58 years 

UTM=Universal Transverse Mercator

Figure 1. The location of the study area within the Italian 
national borders is represented by the green rectangle, and 
in detail the distribution of 14 plots within the study area.

Feature Value
Weight 5.2 kg
Range determination Phase-shift
Beam deflection principle Rotating elliptical mirror
Laser wavelength 1550 nm
Range 0.6 – 130 m
Azimut range (horizontal field of 
view)

0° – 360°

Zenith range (vertical field of 
view)

0° – 300°

Nominally beam divergence 0.19 mrad
Number of returns/pulse 1
Measurements velocity Up to 976000 points per 

second
Linearity error ± 2 mm
Integrated colored camera 70000000 pixel

Table 2. Characteristics of Focus3D X 130 terrestrial laser 
scanner
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scanner inside the borders of the plot at a distance of 3 
to 6 m from the plot center and five to seven scans with 
the scanner external to the plot at a distance of 10-25 m 
from the plot centre. Twelve 14 mm diameter spheres 
were used for scan co-registration. This target type has 
been proven to be the most effective laser scanning 
target for co-registration because a spherical shape 
allows for the highest possible scanning efficiency from 
various directions and always provides a homogeneous 
reference surface (Brazeal, 2013). The targets were 
placed on poles at different heights and distributed 
throughout the plot both inside and outside (Fig. 2).

The laser scanner acquisition time for each scan was 
7 min and 40 s with following parameters: scan angle, 
±180°; resolution, 1/4; quality 3x; scan dimension, 10240 
× 4267, 43.7 MPti; point distance, 6.136 mm/10 m.

Methods

Dendrometric data processing

From the ground data collected at plot level, the 
following variables have been computed for each plot: 
tree density, quadratic mean diameter, basal area, and 
mean height.

Volume for all live, unbroken trees was computed 
using the equations developed by Tabacchi et al. 
(2011) for the INFC II which allows the prediction 
of the aboveground tree volume using DBH and total 

tree height as independent variables for 25 of the most 
important forest species growing in Italy. In this study, 
tree volume is the volume of stem and branches with 
diameter equal to or bigger than 5 cm calculated with 
the INFC II species specific equations.

TLS data processing

For each plot, scans were registered into a local 
coordinate system by the reference sphere using 
Trimble RealWorks Software (Trimble Inc., Sunnyvale, 
CA, USA).

Successive TLS data processing was performed 
using the open source platform Computree (Othmani 
et al., 2011) which integrates various plugins each 
composed of various steps; for this reason in the 
following description the name of the plugin and step, 
as called in Computree platform, are provided in italic 
within bracket.

First of all, each registered point cloud was pre-
elaborated to trade-off completeness of field information 
and elaboration time needed. For these purposes, each 
point cloud obtained from the registration process 
was translated to have its coordinate system origin at 
the plot center coherent with the field survey (toolkit 
plugin, TK_TranslateCloud step). Then, the point cloud 
was clipped with a 10 m radius cylinder centered at the 
plot center (onf plugin, ONF_StepExtractPlot step).

Successively, QSMs of trees were built to produce 
cylinders which describe the complete above-ground 
woody tree components in a topologically order (Åker-
blom et al., 2017). The reproducible pipe line consisted 
in these main phases:

(i) Classification of returns into ground and non-
ground points and DTM generation: returns were 
classified as ground points (onf plugin, ONF_Step-
ClassifyGround step), noise was removed from detected 
points (simpletree plugin, ST_StepFilterGroundPoints 
step) and the DTM was created (onf plugin, ONF_step-
ComputeDTM02 step).

(ii) Generation of seed points: to produce the seeds 
needed in the tree segmentation process, from the non-
ground points, a slice parallel to the DTM at a height 
between 1.30 m and 1.60 m was extracted (simpletree 
plugin, ST_StepExtractSliceAboveDTM step). The slice 
was successively denoised to eliminate the type vegetation, 
such as shrubs, felled trees, etc., that can compromise 
the detection of tree stems (simpletree plugin, ST_Step-
FilterStems, ST_StepExtractLargestCluster, ST_StepEx-
tractSliceAboveDTM,  ST_StepMergeClouds, ST_Step-
ClearSky,  ST_StepExtractSliceAboveDTM steps). To   
the obtained denoised slice, Euclidean clustering opera-
tion (simpletree plugin, ST_StepEuclideanClustering 
step) was applied pro-ducing two output clouds, one 

Figure 2. An example of scanning configuration for a plot. 
The sample plot is a circular area with radius R. The plot 
center is marked with a yellow star and the positions of the 
trees are shown as solid circles. Xs indicate the locations 
of the laser scanner instrument. The six scan positions 
external to the plot boundary are located in six quadrants 
with respect to the center of the plot (each quadrant result-
ing in 60°); the scans have a distance D from the center 
of the plot varying from 15 to 25 m. Spheres used for the 
co-registration of scans are shown as open circles.
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containing all large clusters and one all small clusters, 
allowing the former ones the identification of points 
belonging to the stems, i.e. the seed points, from which 
to start segmenting a tree.

(iii) Tree segmentation: starting from seeds obtained 
at the phase (ii), individual tree segmentation was 
performed (simpleree plugin, ST_StepSegmentationAll 
step).

(iv) Fitting tree models by cylinders using QSMs and 
applying allometric correction: preliminary steps were the 
application of denoising filters to the clusters (onf plugin, 
ONF_StepFilterClustersBySize step; simpletree plugin, 
ST_StepFilterClusters, ST_StepStatisticalOutlierRemoval, 
ST_StepSplitByHeight, ST_StepExtractLargestCluster, ST_
StepMergeClouds, ST_StepVoxelGridFilter steps) which 
allowed us obtain clear trees to enhance the results of the 
application of the QSM sphere following method to fit tree 
branches by cylinders with allometric correction (simpletree 
plugin, ST_StepCompleteFolderModelling2 step).

(v) Computing dendrometric parameters: coordinates 
of tree position, DBH, height, and volume were 
computed and saved in a result list file, while data 
describing each cylinder obtained from the QSM sphere 
following method, e.g. branch order, start (x,y,z), end 
(x,y,z), radius, length, etc., were saved in a user-specific 
folder in a second file per tree (simpletree plugin, ST_
StepExportAll step).

The version of SimpleTree plugin used in this study 
was the 4.30.1 (Hackenberg et al., 2015a).

Despite the pipeline being equally performed for 
all plots, the parameterization was plot-specific, this 
means that for each plot specific values of parameters 
in each single step were set. This was necessary to 
adapt the process to the peculiarity of each plot in term 
of site morphology, and forest structure (i.e. tree and 
underwood density, young trees, uprooted trees, etc.).

Specifically concerning the algorithms applied in the 
QSM approach of SimpleTree plugin, details will be 
available in the deliverable “Algorithms for automatic 
tree detection, stem form in 3D and cloud density for 
small branches from TLS” of the EU project Diabolo 
or from the free available source code. Henceforth we 
will only give a summary. The QSM method utilized 
in SimpleTree is based on the usage of search spheres 
which reconstruct the structure from the roots to the 
tree tips following the tree branches (Hackenberg et al., 
2014, 2015b). For each search sphere, if its center is 
approximately located on the tree skeleton and its radius 
is larger than the according tree components radius will 
have on its surface points representing cross sectional 
areas. A circle is fitted with the Maximum Likelihood 
Estimation Sample Consensus (MLESAC) algorithm 
(Torr & Zisserman, 2000), its radius is stored, then 
enlarged by a factor of ~2 and finally converted to a new 

3D sphere so the procedure can be repeated recursively. 
In case of branch junctions, multiple circles can be 
fitted. Two successively fitted circles are combined to 
build a cylinder. The procedure terminates when the 
sphere reaches the tip of the tree or a large gap between 
the points which can occur in case of occlusion. In these 
cases, the attractor technique developed by Côté et al. 
(2011; 2012) is utilized by the SimpleTree plugin to 
allow the method to estimate also cylinders geometry 
in large occluded areas. After the cylinders derived 
from circle fits are generated, they are improved by the 
plugin through the MLESAC algorithm for cylinder 
fitting. This algorithm allows robust fitting of models 
due to its high tolerance of outliers in the experimental 
data that has been applied to a wide range of model 
parameter estimation problems in computer vision, e.g. 
feature matching, registration or detection of geometric 
primitives (Fischler & Bolles, 1981). The SimpleTree 
approach also includes an allometric scaling theory 
based improvement which takes into consideration the 
relationship between the growth volume of a generated 
cylinder, that is the volume of the generated cylinder 
plus the growth volume of all the cylinder’s children, 
and its radius. The function allows for the identification 
of cylinders with an overestimated volume which are 
outliers of the function, so in this way the radius of 
cylinder is adjusted to be in accordance with its fixed 
growth volume (Hackenberg et al., 2015a).

Statistical analysis

Tree detection analysis was conducted by computing 
the relative value of detection rate, comparing the 
number of trees surveyed in each plot with the number 
of trees segmented by QSM method in the same plot. In 
addition, the value of the detection rate was calculated 
by considering the entire number of surveyed trees 
within 5 cm-wide DBH classes.

Differences between positions of trees recorded 
during the field campaign and the position resulting 
from the QSM process were computed only for trees 
recognized to be homologous. Influence of DBH 
and distance from plot border in the accuracy of tree 
position were explored.

Tree parameters measured in field survey, i.e. DBH, he-
ight, and volume computed from the INFC II equations, 
were compared to those resulting from TLS data processing.

Considering that a combination of metrics are often 
required to assess model performance (Chai & Draxler, 
2014), the determination coefficient (R2), root-mean-
squared error (RMSE), relative value of the RMSE 
(RRMSE), mean absolute error (MAE), relative value of 
the MAE (RMAE), mean bias error (MBE) and relative 
mean bias error (RMBE) were calculated to compare 
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predictions and observations. MAE was calculated 
because according to Wilmott & Matsuura (2005) this 
dimensioned statistics is a more natural measure of 
average error. MBE was reported with the intention to 
indicate average model “bias”, that is average over- or 
underprediction (Wilmott & Mat-suura, 2005).

RMSE, for n different predictions corresponding 
to the number of trees, was computed as following:

						       [1]

where yi is the predicted value for i-th tree and yi is 
the observed value for the same i-th tree.

RRMSE was computed as the RMSE in percent 
over the mean observed value of the target variable, 
to able to compare the results obtained in this study 
with those obtained in other researches.

MAE was computed as following:
							     

					      	  [2]

and the RMAE was computed as the MAE in percent 
over the mean observed value of the target variable.

The MBE was computed as the difference between 
the model-predicted and observed means respecti-
vely, as following:

							     
						       [3]

and the RMBE was computed as the MBE in percent 
over the mean observed value of the target variable.

The edge effect, i.e. the effect of distance from the 
plot boundary, in the accuracy of DBH, height and 
volume estimation from TLS data was tested to evaluate 
the influence of buffer size from the plot border in the 
performance of biometric variable estimation.

Statistical analysis was performed with R (R Core 
Team, 2013).

Results

Plot level dendrometric data processing results

Table 3 reports the values of basal area for each tree 
species in the plot and the corresponding values in terms 
of percent composition for all 14 plots.

In Table 4, average values for the dendrometric 
parameters of all trees with DBH equal or bigger 
than 3.5 cm of 14 plots are reported. Density ranges 
between 923 and 2420 trees per hectare, while quadratic 
mean diameter ranges between 15 and 36 cm, and the 
height of trees surveyed between 12 and 22 m. Data 
analysis allowed for the identification of 6 groups of 
plots according to their structural characteristics. A 
group (Plot_1_1, 1_2, 2_1 and 2_2) includes pure and 
almost pure plots of Brutia pine (from 100% to 89.7%) 
with quadratic mean diameter from 32 cm to 36 cm, a 
second group includes plots within adult stands mixed 
of Brutia pine, other coniferous, pubescent oak and 
other broadleaves (Plot_3_1 and 3_2), a third group 

Plot
Basal area (m2/ha)

Pb Pn Cs Oc Fo Qc Qp Ob
1_1 83.19 [100.0] - - - - - - -
1_2 92.70 [89.7] - 2.31 [6.9] - 0.12 [3.4] - - -
2_1 99.50 [90.0] - 1.10 [2.5] - 0.51 [5.0] - - 0.14 [2.5]
2_2 90.56 [95.6] - - - 0.38 [4.4] - - -
3_1 55.74 [37.8] 3.46 [2.2] - - 1.23 [17.8] 1.14 [2.2] 11.43 [24.4] 1.46 [15.6]
3_2 38.03 [46.7] - - 0.88 [10.0] 0.40 [10.0] - 12.16 [30.0] 0.17 [3.3]
5_1 - 51.90 [35.9] - - 2.19 [45.3] 11.47 [15.6] - 0.16 [3.1]
5_2 - 60.11 [32.9] 5.23 [5.3] - 3.58 [46.1] 1.38 [2.6] - 1.06 [13.2]
6_1 - 12.88 [7.9] 2.15 [2.6] - 5.28 [60.5] 21.36 [18.4] - 1.06 [10.5]
6_2 - 39.55 [31.8] 11.22 [16.7] - 3.59 [45.5] - - 0.65 [6.1]
7_1 - 44.12 [27.5] 4.29 [5.8] 5.17 [1.4] 3.73 [56.5] 4.59 [8.7] - -
7_2 - 38.20 [37.5] 14.36 [27.1] - 0.84 [20.8] 11.86 [12.5] - 0.29 [2.1]
9_1 - 45.02 [20.0] 13.68 [22.7] 0.51 [1.3] 3.38 [53.3] - - 0.14 [2.7]
9_2 - 31.19 [31.0] 23.33 [35.7] - 0.69 [28.6] 0.36 [4.8] - -

 ̂

Table 3. Values of basal area for the species in each plots with the values of tree species composition in percent within the 
square bracket. Pb=Pinus brutia Ten., Pn=Pinus nigra J.F. Arnold, Cs=Cupressus sempervirens L., Oc=other coniferous, 
Fo=Fraxinus ornus L., Qc=Quercus cerris L., Qp=Quercus pubescens Willd., Ob=other broadleaves
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is represented by plots within young stands mainly 
composed of European black pine and manna ash 
with a tree density ranging from 2000 to 2400 trees/ha 
(Plot_5_1, 5_2 and 6_2). Another group includes plots 
within stands composed of European black pine, Tuscan 
cypress, and manna ash with a tree density ranging from 
1300 to 1500 trees/ha (Plot_9_2 and 7_2). Another group 
of plots was found within stands mainly composed of 
manna ash, European black pine and Tuscany cypress 
with a tree density around 2300 trees/ha (Plot_7_1 and 
9_1), and a plot almost completely composed of small 
broadleaves trees (manna ash and pubescent oak) with 
high tree density (Plot_6_1).

Tree detection results

The results of tree detection from the individual tree 
segmentation process are reported in Table 5 which 
compares the number of trees surveyed in each plot 
with the number of segmented trees and shows the 
percentage of trees not detected (i.e. false negative) 
and the percentage of clusters erroneously detected as 
trees (i.e. false positive). In general the rate of false 
positive is higher than the rate of false negative, which 
is due to the fact that the QSM process reconstructed 
scattered groups of returns as trees. Plots with the most 
false positives are those which contain a high number 
of young manna ash stems, which occurs in the lower 
canopy layer (see characteristics of plots in Table 3).

Fig. 3 shows the number and percentage of detected, 
not detected and over detected trees in relation to the 

DBH. The highest detection rate is for the trees with a 
stem diameter between 25 cm and 35 cm. In the case of 
a stem with a diameter between 10 cm and 20 cm there 
is an over-detection, this means that the segmentation 
process generates more trees than are actually present 
in the plots.

The matching process between the coordinates of 
trees recorded during inventory campaign and those 
obtained from the tree segmentation allowed 491 tree 
pairs to be found. The accuracy of the tree position 
obtained as output of the QSM with respect to field 
position is reported in Table 6 as minimum, maximum, 
mean and standard deviation, and distance from plot 
centre RMSE and its relative pendant RRMSE.

In Fig. 4, positioning deviation in relation to field 
inventory DBH (a) and the tree distance from plot 
center (b) are represented. Neither the DBH nor the 
distance from the center to the boundary of the plot 
seem to influence the position deviation.

Tree DHB, height and volume prediction

Reference data DBH values regressed against TLS 
DBH values are plotted in Fig. 5: the linear regression 
shows a determination coefficient of 0.98, a RMSE equal 
to 1.75 cm, and a RRMSE equal to 7.81% (Fig. 5a). MAE 
and RMAE are respectively equal to 0.89 cm and 3.99%, 
while MBE and RMBE are respectively -0.81 cm and 
-3.64%. The residual plot (Fig. 5b) shows a fairly random 
pattern, indicating a good fit for a linear model and the 
absence of any influence of DBH on the estimation error.

Plot Mean tree age 
(years)

Density 
(trees/ha)

Quadratic mean 
diameter (cm)

Basal area 
(m2/ha)

Mean measured 
height (m)

1_1 51 1018.59 32.25 83.19 20.94

1_2 51 923.10 36.22 95.13 23.32

2_1 51 1273.24 31.83 101.25 20.05

2_2 51 1432.39 28.43 90.94 20.56

3_1 51 1432.39 25.73 74.46 18.89

3_2 51 954.93 26.24 51.64 18.18
5_1 58 2037.18 20.27 65.72 17.79

5_2 58 2419.16 19.38 71.38 17.09

6_1 58 2419.16 15.00 42.73 14.06

6_2 58 2100.85 18.26 55.01 12.93

7_1 58 2196.34 18.95 61.90 13.73

7_2 58 1527.89 23.37 65.55 15.32

9_1 58 2387.32 18.29 62.73 16.22

9_2 58 1336.90 23.01 55.57 18.23

Table 4. Mean values of dendrometric parameters of each of 14 plots of 10 m of radius
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The reference data height regressed against TLS 
height is plotted in Fig. 6a: the R2  is 0.60, the RMSE 
is 3.00 m, the RRMSE is 16.99%, the MAE is 1.02 m 
and the RMAE is 5.80%. The MBE and RMBE are 
respectively -0.81 m and -4.59%. Tree heights tended to 
be underestimated by TLS for trees up to approximately 
10 m tall and overestimated for trees above this height 
(Fig. 6b).

Concerning the volume estimation for all species 
of trees, i.e. coniferous and broadleaved, volume 
computed with the INFC II equations regressed against 
tree volume inferred using QSMs applied to the TLS 
data shows moderate low degree of correlation and an 
overestimation was observed. When only broadleaved 
trees are considered, the performance increases 
(R2=0.64, RMSE=0.27 m3, RRMSE=137.08%, MAE= 
0.16 m3, and RMAE=82.25%, MBE=0.16 m3, RMBE= 
82.25%), as seen in Fig. 7.

The effect of distance from plot boundary in RMSE 
and R2 of DBH, height and volume estimation are 

Table 5. Results from the process of tree segmentation

Plot Number of trees 
(DBH ≥3.5 cm)

Number of segmented 
trees (DBH ≥3.5 cm)

% of trees not detected 
(false negative)

% of trees over detected 
(false positive)

1_1 32 32 0 0
1_2 29 33 0 13.8

2_1 40 41 0 2.5

2_2 45 43 4.4 0

3_1 45 55 0 22.2

3_2 30 37 0 23.3

5_1 64 54 15.6 0

5_2 76 68 10.5 0

6_1 76 73 3.9 0

6_2 66 80 0 21.2

7_1 69 75 0 8.7

7_2 48 53 0 10.4

9_1 75 95 0 26.7

9_2 42 45 0 7.1
DBH=diameter at breast height

Figure 3. Number (a) and percentage (b) of detected, not 
detected and over detected trees per diameter class. Diameter 
at breast height (DBH) values referred to the upper boundary 
of the DBH interval, e.g., 10 cm is the range 5 cm ≤ DHB 
< 10 cm

Table 6. Accuracy of tree position in 491 trees
Min deviation 0.019 m
Max deviation 1.496 m
Mean deviation 0.489 m
Standard deviation 0.309 m
Distance from plot centre RMSE 0.348 m
Distance from plot centre RRMSE 5.63%

RMSE=root-mean-squared error. RRMSE=relative value of 
RMSE

(a)

  
(b)
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Figure 4. Positioning deviation in relation to field inven-
tory diameter at breast height (DBH) (a) and the distance 
from plot center (b)

Figure 5. Field inventory diameter at breast height (DBH) 
against terrestrial laser scanner (TLS) DBH (a) and stan-
dardized residuals distribution (b)

Figure 6. Field inventory height against terrestrial laser 
scanner (TLS) height (a) and standardized residuals dis-
tribution (b)

Figure 7. Italian National Forest Inventory (INFC) volume 
of broadleaved tree against quantitative structure model 
(QSM) volume and standardized residuals distribution

(a)

  
(b)

(a)

  
(b)

(a)

  
(b)

(a)

  
(b)

R2

R2
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reported in Figs. 8. With reference to DBH estimation 
from TLS data, Fig. 8a shows that the highest 
estimation accuracy is achieved at a distance of 4 m 
from the plot center; when moving toward the border 
of the plot the accuracy decreases. A buffer of about 
6 m from the boundary of the plot seems to be a safe 
approach to increase the estimation of this variable. A 
sharp increase in tree height estimation accuracy with 
TLS data occurs when trees are located farther from the 
border of the plot (Fig. 8b), this means that the accuracy 
of tree height estimation from TLS data is strongly 
influenced by the distance from plot border. A smaller 
estimation error resulted for trees located within 5 m 
from the plot center. The threshold of distance from 
the plot center that marks a big difference in volume 
estimation accuracy for broadleaved trees is 5 m (Fig. 
8c): volume estimation accuracy decreases in a wide 
band approximately 5 m from plot border.

Discussion

The first consideration is about structural and specific 
heterogeneity of plots. A sample of plots differentiated in 
terms of structural and specific characteristics provides 
a good chance to represent local considerations and 
determine whether the rate of detection is eventually 
influenced by those aspects.

The application of QSM in TLS data allowed for 
the extraction of single trees and the assessment of tree 
variables at plot level in mixed forests.

Tree segmentation and fitting cylinders detected 
a larger number of trees, which resulted in an overall 
false negative rate of 9%. It is worth mentioning that 
the QSM method requires many parameters to be set, 
in all phases except for the QSM step in which a fully 
automatic parameters search was used. For this reason, 
the detection error seems to be related to the peculiarity 
of the forest structure of each plot rather than to the 
QSM method. In some plots, the stems lying on the 
ground, fallen or uprooted as a consequence of scarce 

thinning intervention in the forest, generated objects 
which have been segmented as trees. The results from 
the detection process of this study confirmed what 
Liang et al. (2016) found in many investigations carried 
out from 2004 to 2014: the detection rate decreases as 
the stem density increases. In fact, in our study, the 
highest levels of overestimation were reached in plots 
with a density bigger than 2100 trees/ha, while in plots 
with stem density up to 1200 trees/ha the detection 
rate was around 100%. In this study, the number of 
non-detected trees was highest for trees with a DBH 
above 35 cm. Comparing this result with that of other 
studies is difficult, because this result is affected by 
the scheme used in the scan data acquisition and by 
the season of surveys, i.e. leaf-on or leaf-off period. 
We observed that the number of trees inventoried for 
diameter class 40 cm, 45 cm and 50 cm respectively 
were 60, 27 and 11. The number of trees not segmented 
in the same class were 9, 14, and 5 respectively (15%, 
52% and 45%), see Fig. 3b. If we consider the amount 
of trees inventoried, the trees not segmented in these 
diameter classes correspond to 3.8% of all trees in field. 
Considering that their incidence is small with respect 
the total amount of trees, we are not able to statistically 
identify the factors that influenced this aspect.

Stem position was determined with a standard 
deviation of 0.56 m, but the range between the 
minimum (0.02 m) and maximum deviation (1.50 m) 
was quite large. Tests made in the field to evaluate 
the reliability of the instruments that measure the 
parameters needed for tree position determination in 
the field, angle and distance of tree from the station, 
demonstrated that these values are not stable and could 
be affected by magnetic fields. Anyway, it is difficult 
to say if the reference value of position should come 
from traditional instruments or from a terrestrial laser 
scanner. The comparison of DBH values obtained 
from the application of QSM in TLS data with those 
measured in field showed a satisfying level of accuracy 
(R2=0.98, RMSE=1.75 cm, and RRMSE=7.81%). This 
result is congruent with the study of Calders et al. (2015) 

Figure 8. Diameter at breast height (DBH) (a), height (b), and volume (c) estimation accuracy (RRMSE and R2) with 
different values of distance from plot center

(a)				            (b)			    	                 (c)
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carried out in a plot of 40 m radius where five scans 
were executed: the RMSE in Calders et al. (2015) was 
2.39 cm in a sample of 75 trees. It seems important to 
point out that similar results were obtained in studies 
that use the single-scan approach. For example, Maas 
et al. (2008) in a plot of 15 m radius with a density of 
212-240 stems/ha obtained a RMSE ranging between 
1.8-3.3 cm, Brolly & Kiraly (2009) in a plot of 30 m 
radius with a density of 753 stems/ha obtained a RMSE 
ranging between 3.4 cm and 7.0 cm. But also Liang 
& Hyyppa (2013) in plot of 10 m radius with a density 
ranged between 605 and 1210 stems/ha obtained a RMSE 
between 0.7 and 2.4 cm, and Olofsson et al. (2014) in 
plot of 20 m of radius with 358-1042 stems/ha reached a 
RMSE between 2.0 and 4.2 cm. DBH is the biometrical 
parameter estimated with the highest performance from 
TLS data.

On the contrary, the comparison of field inventory 
tree heights against TLS-derived tree heights from 
the application of QSMs did not show a good linear fit 
(R2=0.60). Unfortunately, also the studies cited above − 
Maas et al. (2008), Liang & Hyyppa (2013), Olofsson et 
al. (2014) − did not obtain reassuring results reporting 
RMSE respectively of 4.6 m, 2.0-6.5 m, 4.9 m, which are 
greater than the RMSE reported in this study (3.00 m). 
At the moment, these results do not come out in favor of 
TLS data for very accurate height estimation, regardless 
of the method used to extract single trees and to compute 
the height, and regardless of the mode used for scanning 
the plots (single or multi-scan modes). These low values 
of accuracy are most probably due to the uncertainty 
of the visibility of treetops in TLS data which lead 
to underestimated heights and to a magnitude of 
the estimation error typically around meters. This is 
particularly severe in coniferous species due to needle 
occlusion in TLS surveys. Tree height measurements 
using TLS for forest inventories need to be thoroughly 
studied because the height values invalidate consequent 
volume estimation values. At the same time, it is 
important emphasize that better results have been 
obtained in case of height measured with traditional 
instruments (e.g. measuring tape or Laser Tech Impulse) 
in harvested trees: this means that we have to take in 
consideration that subjectivity at height measurement 
came with the large applicability of modern instruments, 
such as Vertex. According to Vasilescu (2013), the user 
error caused by the sight line at the top of tree is 0.3 m 
for the smaller tree (about 10 m height) and less than 
0.2 m in case of taller trees (height bigger than 20 m). 
Larjavaara & Muller-Landau (2013) confirmed that 
laser rangefinder tree height measurements which used 
the sine method resulted in systematic underestimation 
by 20% on average with respect to instruments using 
the tangent method. On the other hand, TLS surveys 

carried out during leaf-off season in case of broadleaved 
forests, can increase the accuracy of height estimation 
using TLS data (Srinivasan et al., 2015).

The performance of the volume estimates using 
the QSMs, evaluated by comparing this volume to the 
volume predicted using the Italian nationwide volume 
models developed by Tabacchi et al. (2011), was weak in 
case of all species, with a general trend of overestimation 
by the QSMs. According to Calders et al. (2015), 
possible error sources that can cause overestimation 
can be related to TLS data, including registration error, 
occlusion, wind and noise, or to QSM reconstruction, 
such as segmentation and geometric structure error due 
to cylinder versus real branch or leaf shape. In fact, 
according to Kunz et al. (2017), high values of accuracy 
in tree volume calculation from point clouds applying 
cylinder model approaches scanning were reached using 
TLS data of single trees that were scanned from different 
position, for example from four positions perpendicular 
to each other. In this case, volume was estimated with 
a determination coefficient of 0.89 and 0.92 using the 
Raumonen et al. (2013) and the Hackenberg et al. (2014) 
approaches respectively. The results from their studies 
confirmed that excellent results can be obtained when 
QSMs are applied at the level of single tree instead of 
plot level and targeting merchantable volumes instead 
of total volume. In this study, data were acquired at plot 
level and cloud segmentation was performed at the plot 
level; moreover, total volume was considered instead 
of merchantable volume as the most common target 
variable in forest inventories. Furthermore, occlusions 
in the top of tree crown can be important, which 
sometimes leads to the reconstruction of branches that 
are not actually present, and consequently the volume 
of those branches is estimated. It is known that the 
stem is the tree component that contributes most to the 
total volume of a tree, but when tree density is high the 
occlusions are also high, so the estimation errors will 
increase. In fact, the performance of QSM increases 
in case of broadleaved trees: this leads to considering 
needle noise as a key source of error. Stovall et al. 
(2017) have highlighted that this approach can result 
in unexpected and unrealistic volumes in dense or 
clumped tree canopies that have significant occlusion 
such as those caused by needles. In particular, results in 
the supplementary material of Stovall et al. (2017) show 
high good fitting quality on an isolated stems above 
ground biomass (R²=0.98), while model performance 
decreases when branches with needles, which increases 
noise, are included (R²=0.42).

It is also worth underlining that the allometric models 
used for volume estimation are valid for the all national 
territories, and using an allometric models in areas 
with different climatic, geographic, and silvicultural 
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conditions to those where the models were developed 
may lead to large errors in the estimates (Liang et al., 
2014, 2016).

This study allowed us to understand that the position 
of trees with respect to the plot boundary influenced 
the quality of estimation of the biometrical parameters. 
This is probably due to the condition of trees at the 
edge of the clipped point cloud. In fact, to clipping the 
point cloud abruptly is a mandatory step in the TLS 
plot data preparation. As a consequence many trees 
effectively present in the plot can be partially erased 
from the cloud compromising the next steps. From 
this result, an important outcome follows: when TLS 
data are processed, a buffer zone should be considered 
around the area under investigation as proposed by 
Calders et al. (2015) and the data analysis should be 
undertaken in this extended area, and at the end of data 
analysis, the trees that are located in the buffer zone 
should be excluded. In this way, it is possible to take 
advantage of the positive effect of a buffer area to 
improve the estimates. This threshold can be 4-5 m for 
stands structurally similar to the sample plots used in 
this study. This finding can be relevant to significantly 
increasing the accuracy of tree height and broadleaved 
tree volume estimates (35% and 42% increase of 
RRMSE respectively) to acceptable values at plot level. 
This outcome can help in planning the TLS surveys and 
the computational procedures.

The QSM approach allows for the extraction of a large 
number of parameters, for instance branch order, angle and 
radius, ovality of the stem, open stem height etc. This can 
be very useful for analysis in commercial forests with less 
complex structure compared with our dense sample stands 
with dense understorey vegetation. Definitively, terrestrial 
LiDAR is a remote sensing technology that should be 
exploited beyond forest inventory purposes. Stronger 
effort should be put to the analysis of the information 
obtained from the products derived from TLS for to use 
them for ecological purposes (e.g. growth monitoring, 
disturbance assessing, structural indices extraction etc.).

References

Åkerblom M, Raumonen P, Kaasalainen M, Casella E, 2015. 
Analysis of geometric primitives in quantitative structure 
models of tree stems. Remote Sens 7: 4581-4603. https://
doi.org/10.3390/rs70404581

Åkerblom M, Raumonen P, Mäkipää R, Kaasalainen M, 
2017. Automatic tree species recognition with quantitative 
structure models. Remote Sens Environ 191: 1-12. https://
doi.org/10.1016/j.rse.2016.12.002

Arrigoni PV, Foggi B, Bechi N, Ricceri C, 1997. Documenti 
per la carta della vegetazione del Monte Morello (Provincia 

di Firenze). Parlatorea II: 73-100.
Aschoff T, Spiecker H, 2004. Algorithms for the automatic 

detection of trees in laser scanner data. ISPRS 36: 66-70.
Bauwens S, Bartholomeus H, Calders, Lejeune P, 2016. 

Forest inventory with terrestrial LiDAR: A comparison of 
static and hand-held mobile laser scanning. Forests 7 (6): 
127-143. https://doi.org/10.3390/f7060127

Bentley LP, Stegen JC, Savage VM, Smith DD, von Allmen 
EI, Sperry S, Reich PB, Enquist BJ, 2013. An empirical 
assessment of tree branching networks and implications 
for plant allometric scaling models. Ecol Lett 16 (8): 
1069-1078. https://doi.org/10.1111/ele.12127

Bienert A, Hess C, Maas HG, Von Oheimb G, 2014. A Voxel-
based technique to estimate the volume of trees from 
terrestrial laser scanner data. International archives of the 
photogrammetry, remote sensing and spatial information 
sciences - ISPRS Archives 40 (5): 101-106.

Brazeal R, 2013. Low cost spherical registration targets 
for terrestrial laser scanning. SUR 6905 - Point Cloud 
Analysis.

Brolly G, Kiraly G, 2009. Algorithms for stem mapping 
by means of terrestrial laser scanning. Acta Silvatica et 
Lignaria Hung 5: 119-130.

Calders K, Newnham G, Burt A, Murphy S, Raumonen P, 
Herold M, Culvenor D, Avitabile L, Disney M, Armston J, 
Kaasalainen M, 2015. Nondestructive estimates of above-
ground biomass using terrestrial laser scanning. Meth Ecol 
Evol 89: 86-93. https://doi.org/10.1111/2041-210X.12301

Chai T, Draxler RR, 2014. Root mean square error (RMSE) 
or mean absolute error (MAE)? - Arguments against 
avoiding RMSE in the literature. Geosci Model Dev 7: 
1247-1250. https://doi.org/10.5194/gmd-7-1247-2014

Côté JF, Fournier RA, Egli R, 2011. An architectural model 
of trees to estimate forest structural attributes using 
terrestrial LiDAR. Environ Model Softw 26: 761-777. 
https://doi.org/10.1016/j.envsoft.2010.12.008

Côté JF, Fournier RA, Frazer GW, Niemann KO, 2012. A 
fine-scale architectural model of trees to enhance LiDAR-
derived measurements of forest canopy structure. Agr 
Forest Meteorol 166: 72-85. https://doi.org/10.1016/j.
agrformet.2012.06.007

Dassot M, Colin A, Santenoise P, Fournier M, Constant T, 
2012. Terrestrial laser scanning for measuring the solid 
wood volume, including branches, of adult standing trees 
in the forest environment. Comp Electron Agr 89: 86-93. 
https://doi.org/10.1016/j.compag.2012.08.005

Enquist BJ, West GB, Brown JH, 2009. Extensions and 
evaluations of a general quantitative theory of forest 
structure and dynamics. P Nat Acad Sci USA 106 (17): 
7046-7051. https://doi.org/10.1073/pnas.0812303106

Fischler MA, Bolles RC, 1981. Random sample consensus: 
A paradigm for model fitting with application to image 
analysis and automated cartography. Commun ACM 24 
(6): 381-395. https://doi.org/10.1145/358669.358692

https://doi.org/10.3390/rs70404581 
https://doi.org/10.3390/rs70404581 
https://doi.org/10.1016/j.rse.2016.12.002
https://doi.org/10.1016/j.rse.2016.12.002
https://doi.org/10.3390/f7060127
 https://doi.org/10.1111/ele.12127
https://doi.org/10.1111/2041-210X.12301 
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.envsoft.2010.12.008
https://doi.org/10.1016/j.agrformet.2012.06.007 
https://doi.org/10.1016/j.agrformet.2012.06.007 
https://doi.org/10.1016/j.compag.2012.08.005
https://doi.org/10.1073/pnas.0812303106
https://doi.org/10.1145/358669.358692


Chiara Torresan, Ugo Chiavetta, and Jan Hackenberg

Forest Systems April 2018 • Volume 27 • Issue 1 • e004

14

Gatteschi P, Meli R, 1996. I rimboschimenti di Monte Morello 
85 anni dopo (1909-1994) [Monte Morello reforestation 
85 years later (1909-1994)]. L'Italia Forestale e Montana 
4: 231-249.

Gorte B, Pfeifer N, 2004. Structuring laser scanned trees using 
3D mathematical morphology. Int Archiv Photogramm 
Remote Sens 35 (B5): 929-933.

Hackenberg J, Morhart C, Sheppard J, Spiecker H, Disney M, 
2014. Highly accurate tree models derived from terrestrial 
laser scan data: a method description. Forests 5: 1069-
1105. https://doi.org/10.3390/f5051069

Hackenberg J, Spiecker H, Calders K, Disney M, Raumonen 
P, 2015a. SimpleTree —An efficient open source tool to 
build tree models from TLS clouds. Forests 6: 4245-4294. 
https://doi.org/10.3390/f6114245

Hackenberg J, Wassenberg M, Spiecker H, Sun D, 2015b. 
Non destructive method for biomass prediction combining 
TLS derived tree volume and wood density. Forests 6 (4): 
1274-1300. https://doi.org/10.3390/f6041274

Henning JG, Radtke PJ, 2006. Detailed stem measurements 
of standing trees from ground-based scanning Lidar. 
Forest Sci 52 (1): 67-80.

Holopainen M, Vastaranta M, Kankare V, Räty M, Vaaja 
M ,Liang X, Yu X, Hyyppä J, Hyyppä H, Viitala R, 
Kaasalainen S, 2011. Biomass estimation of individual 
trees using stem and crown diameter TLS measurements. 
Int Archiv Photogramm Remote Sens Spat Inf Sci - ISPRS 
Archiv 38 (5W12): 91-95.

Hopkinson C, Chasmer L, Young-Pow C, Treitz P, 2004. 
Assessing forest metrics with a ground-based scanning 
lidar. Can J Forest Res 34 (3): 573-583. https://doi.org/ 
10.1139/x03-225

Hosoi F, Nakai Y, Omasa K, 2013. 3-D voxel-based solid 
modeling of a broad-leaved tree for accurate volume 
estimation using portable scanning lidar. ISPRS J 
Photogramm Remote Sens 82: 41-48. https://doi.
org/10.1016/j.isprsjprs.2013.04.011

Ishak NI, Abu Bakar MA, Abdul Rahman MZA, Rasib AW, 
Kanniah KD, Meng Shin AL, Razak KA, 2015. Estimating 
single tree stem and branch biomass using terrestrial laser 
scanning. Jurnal Teknologi 77 (26): 59-67. https://doi.
org/10.11113/jt.v77.6860

Kunz M, Hess C, Raumonen P, Bienert A, Hackenberg J, 
Maas HG, Härdtle W, Fichtner A, Von Oheimb G, 2017. 
Comparison of wood volume estimates of young trees 
from terrestrial laser scan data. iForest 10: 451-458.

Larjavaara M, Muller-Landau HC, 2013. Measuring tree 
height: a quantitative comparison of two common field 
methods in a moist tropical forest. Meth Ecol Evol 4 (9): 
793-801. https://doi.org/10.1111/2041-210X.12071

Liang X, Hyyppä J, 2013. Automatic stem mapping by 
merging several terrestrial laser scans at the feature and 
decision levels. Sensors 13: 1614-1634. https://doi.
org/10.3390/s130201614

Liang X, Kankare V, Yu X, Hyyppa J, Holopainen M, 2014. 
Automated stem curve measurement using terrestrial laser 
scanning. IEEE Trans Geosci Remote Sens 52: 1739-
1748. https://doi.org/10.1109/TGRS.2013.2253783

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén 
H, Yu X, Kaartinen H, Jaakkola A, Guan F, et al., 2016. 
Terrestrial laser scanning in forest inventories. ISPRS 
J Photogramm Remote Sens 115: 63-77. https://doi.
org/10.1016/j.isprsjprs.2016.01.006

Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J, 2010. 
Automatic reconstruction of tree skeletal structures from 
point clouds. ACM Trans on Graphics 29 (6): 151. https://
doi.org/10.1145/1882261.1866177

Maas HG, Bienert A, Scheller S, Keane E, 2008. Automatic 
forest inventory parameter determination from terrestrial 
laser scanner data. Int J Remote Sens 9 (5): 1579-1593. 
https://doi.org/10.1080/01431160701736406

Maetzke F, 2002. I rimboschimenti di Monte Morello: 
analisi e indirizzi di un progetto aperto per la loro 
rinaturalizzazione [The reforestations of Monte Morello: 
analysis and addresses of an open project for their 
renaturalisation] L'Italia Forestale e Montana 2: 125-138.

Mengesha T, Hawkins M, Nieuwenhuis M, 2015. Validation 
of terrestrial laser scanning data using conventional forest 
inventory methods. Eur J Forest Res 134: 211-222. https://
doi.org/10.1007/s10342-014-0844-0

Moskal LM, Zheng G, 2012. Retrieving forest inventory 
variables with terrestrial laser scanning (TLS) in urban 
heterogeneous forest. Remote Sens 4: 1-20. https://doi.
org/10.3390/rs4010001

Mozaffar MH, Varshosaz M, 2017. Optimal placement of 
a terrestrial laser scanner with an emphasis on reducing 
occlusions. The Photogrammetric Record 31 (156): 374-
393. https://doi.org/10.1111/phor.12162

Newnham GJ, Armston JD, Calders K, Disney MI, Lovell JL, 
Schaaf CB, Strahler AH, Danson FM, 2015. Terrestrial laser 
scanning for plot-scale forest measurements. Curr Forest 
Rep 1: 239-251. https://doi.org/10.1007/s40725-015-0025-5

Olofsson K, Holmgren J, Olsson H, 2014. Tree stem and 
height measurements using terrestrial laser scanning and 
the RANSAC algorithm. Remote Sens 6: 4323-4344. 
https://doi.org/10.3390/rs6054323

Othmani A, Piboule A, Krebs M, Stolz C, Lew Yan Voon 
LFC, 2011. Towards automated and operational forest 
inventories with T-Lidar. 11th Int Conf on LiDAR 
Applications for Assessing Forest Ecosystems (SilviLaser 
2011), Oct 2011, Hobart, Australia.

Potapov I, Järvenpää M, Åkerblom M, Raumonen P, 
Kaasalainen M, 2016. Data-based stochastic modeling of 
tree growth and structure formation. Silva Fennica 50 (1): 
1-11. https://doi.org/10.14214/sf.1413

R Core Team, 2013. R: A language and environment for 
statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. http://wwwR-projectorg/.

 https://doi.org/10.3390/f5051069
https://doi.org/10.3390/f6114245
 https://doi.org/10.3390/f6041274
https://doi.org/10.1139/x03-225
https://doi.org/10.1139/x03-225
https://doi.org/10.1016/j.isprsjprs.2013.04.011
https://doi.org/10.1016/j.isprsjprs.2013.04.011
https://doi.org/10.11113/jt.v77.6860
https://doi.org/10.11113/jt.v77.6860
https://doi.org/10.1111/2041-210X.12071
https://doi.org/10.3390/s130201614 
https://doi.org/10.3390/s130201614 
https://doi.org/10.1109/TGRS.2013.2253783 
https://doi.org/10.1016/j.isprsjprs.2016.01.006 
https://doi.org/10.1016/j.isprsjprs.2016.01.006 
https://doi.org/10.1145/1882261.1866177
https://doi.org/10.1145/1882261.1866177
https://doi.org/10.1080/01431160701736406
 https://doi.org/10.1007/s10342-014-0844-0
 https://doi.org/10.1007/s10342-014-0844-0
https://doi.org/10.3390/rs4010001
https://doi.org/10.3390/rs4010001
https://doi.org/10.1111/phor.12162
https://doi.org/10.1007/s40725-015-0025-5
https://doi.org/10.3390/rs6054323
https://doi.org/10.14214/sf.1413
http://wwwR-projectorg/.


Chiara Torresan, Ugo Chiavetta, and Jan Hackenberg

Forest Systems April 2018 • Volume 27 • Issue 1 • e004

15

Rahman MZA, Bakar MAA, Razak KA, Rasib AW, 
Kanniah KD, Kadir WHW, Omar H, Faidi A, Kassim 
AR, Latif ZA, 2017. Non-destructive, laser-based 
individual tree aboveground biomass estimation in 
a tropical rainforest. Forests 8 (86): 1-22. https://doi.
org/10.3390/f8030086

Raumonen P, Kaasalainen M, Akerblom M, Kaasalainen S, 
Kaartinen H, Vastaranta M, Holopainen M, Disney M, 
Lewis P, 2013. Fast automatic precision tree models from 
terrestrial laser scanner data. Remote Sens 5 (2): 491-520. 
https://doi.org/10.3390/rs5020491

Raumonen P, Casella E, Calders K, Murphy S, Åkerblom M, 
Kaasalainen M, 2015. Massive-scale tree modelling from 
TLS Data. ISPRS Annals of the Photogrammetry, Remote 
Sensing and Spatial Information Sciences, Volume II-3/
W4, 2015, PIA15+HRIGI15 - Joint ISPRS Conf 2015, 25-
27 March, Munich. https://doi.org/10.5194/isprsannals-II-
3-W4-189-2015

Seidel D, 2017. A holistic approach to determine tree 
structural complexity based on laser scanning data and 
fractal analysis. Ecol Evol 8 (1): 128-134. https://doi.
org/10.1002/ece3.3661

Simonse M, Aschoff T, Spiecker H, 2003. Automatic deter-
mination of forest inventory parameters using terrestrial 
laser scanning. Proc Scan Laser Scientific Workshop on 
Airborne Laser Scanning of Forests, Umea, Sweden. pp: 
251-257.

Srinivasan S, Popescu SC, Eriksson M, Sheridan RD, Ku 
NW, 2015. Terrestrial laser scanning as an effective tool to 
retrieve tree level height, crown width, and stem diameter. 
Remote Sens 7: 1877-1896. https://doi.org/10.3390/
rs70201877

Stovall AEL, Vorster AG, Anderson RA, Evangelista 
PH, Shugart HH, 2017. Non-destructive aboveground 
biomass estimation of coniferous trees using terrestrial 
LiDAR. Remote Sens Environ 200: 31-42. https://doi.
org/10.1016/j.rse.2017.08.013

Tabacchi G, Di Cosmo L, Patrizia G, 2011. Aboveground 
tree volume and phytomass prediction equations for forest 
species in Italy. Eur J Forest Res 130 (6): 911-934. https://
doi.org/10.1007/s10342-011-0481-9

Thies M, Spiecker H, 2004. Evaluation and future prospects 
of terrestrial laser scanning for standardized forest 
inventories. Int Archiv Photogramm Remote Sens Spat Inf 
Sci XXXVI - 8/W2. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.221.8063

Thies M, Pfeifer N, Winterhalder D, Gorte BGH, 2004. 
Three-dimensional reconstruction of stems for 
assessment of taper, sweep and lean based on laser 
scanning of standing trees. Scand J Forest Res 19 (6): 
571-581. https://doi.org/10.1080/02827580410019562

Torr PHS, Zisserman A, 2000. MLESAC: A new robust 
estimator with application to estimating image geometry. 
Comp Vision Image Underst 78 (1): 138-156. https://doi.
org/10.1006/cviu.1999.0832

Trochta J, Král K, Janík D, Adam D, 2013. Arrangement 
of terrestrial laser scanner positions for area-wide stem 
mapping of natural forests. Can J For Res 43: 355-363. 
https://doi.org/10.1139/cjfr-2012-0347

Trochta J, Krůček M, Vrška T, Král K, 2017. 3D Forest: An 
application for descriptions of three-dimensional forest 
structures using terrestrial LiDAR. PLoS ONE 12 (5): 
e0176871 https://doi.org/10.1371/journal.pone.0176871

Vasilescu MM, 2013. Standard error of tree height using 
Vertex III. Bull Transilvania Univ of Braşov Series II: 
Forest Wood Indus Agr Food Eng 6 (55-2): 2013.

Vonderach C, Voegtle T, Adler, P, 2012. Voxel-based 
approach for estimating urban tree volume from terrestrial 
laser scanning data. Int Arch Photogramm Remote 
Sens Spatial Inf Sci XXXIX-B8: 451-456. https://doi.
org/10.5194/isprsarchives-XXXIX-B8-451-2012

Watt PJ, Donoghue DNM, 2005. Measuring forest structure 
with terrestrial laser scanning. Int J Remote Sens 26 (7): 
1437-1446. https://doi.org/10.1080/0143116051233133
7961

West GB, Brown JH, Enquist BJ, 1997. A general model 
for the origin of allometric scaling laws in biology. 
Science 276 (5309): 122-126. https://doi.org/10.1126/
science.276.5309.122

Willmott CJ, Matsuura K, 2005. Advantages of the mean 
absolute error (MAE) over the root mean square error 
(RMSE) in assessing average model performance. Clim 
Res 30: 79-82. https://doi.org/10.3354/cr030079

Wilson AD, 2000. New methods, algorithms, and software 
for rapid mapping of tree positions in coordinate forest 
plots. Res Pap SRS-19. Asheville, NC: USDA For Serv, 
South Res Stat. 31 p. https://www.srs.fs.usda.gov/pubs/
rp/uncaptured/rp_srs019.pdf 

Xu H, Gosset N, Chen B, 2007. Knowledge and 
heuristic-based modeling of laser scanned trees. 
ACM Trans Graphics 26(4): 19. https://doi.
org/10.1145/1289603.1289610

https://doi.org/10.3390/f8030086
https://doi.org/10.3390/f8030086
https://doi.org/10.3390/rs5020491
https://doi.org/10.5194/isprsannals-II-3-W4-189-2015
https://doi.org/10.5194/isprsannals-II-3-W4-189-2015
https://doi.org/10.1002/ece3.3661 
https://doi.org/10.1002/ece3.3661 
https://doi.org/10.3390/rs70201877 
https://doi.org/10.3390/rs70201877 
https://doi.org/10.1016/j.rse.2017.08.013
https://doi.org/10.1016/j.rse.2017.08.013
https://doi.org/10.1007/s10342-011-0481-9
https://doi.org/10.1007/s10342-011-0481-9
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.8063
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.221.8063
https://doi.org/10.1080/02827580410019562
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1139/cjfr-2012-0347
https://doi.org/10.1371/journal.pone.0176871
https://doi.org/10.5194/isprsarchives-XXXIX-B8-451-2012
https://doi.org/10.5194/isprsarchives-XXXIX-B8-451-2012
https://doi.org/10.1080/01431160512331337961
https://doi.org/10.1080/01431160512331337961
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.1126/science.276.5309.122
https://doi.org/10.3354/cr030079
https://www.srs.fs.usda.gov/pubs/rp/uncaptured/rp_srs019.pdf 
https://www.srs.fs.usda.gov/pubs/rp/uncaptured/rp_srs019.pdf 
https://doi.org/10.1145/1289603.1289610
https://doi.org/10.1145/1289603.1289610

